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a b s t r a c t

This study relates to the acoustic imaging of noise sources that are distributed and

strongly directional, such as in turbulent jets. The goal is to generate high-resolution noise

direction. Self-consistency is possible by including a directivity factor in the formulation

of the source cross-spectral density. The resulting source distribution is based on the

complex coherence, rather than the cross-spectrum, of the measured acoustic field. For jet

noise, whose spectral nature changes with emission angle, it is necessary to conduct the

measurements with a narrow-aperture array. Three coherence-based imaging methods

were applied to a Mach 0.9 turbulent jet: delay-and-sum beamforming; deconvolution of

the beamformer output; and direct spectral estimation that relies on minimizing the

difference between the measured and modeled coherences of the acoustic field. The

delay-and-sum beamforming generates noise source maps with strong spatial distortions

and sidelobes. Deconvolution leads to a five-fold improvement in spatial resolution and

significantly reduces the intensity of the sidelobes. The direct spectral estimation

produces maps very similar to those obtained by deconvolution. The coherence-based

noise source maps, obtained by deconvolution or direct spectral estimation, are similar at

small and large observation angles relative to the jet axis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Noise source location is central to the understanding, modeling, and suppression of noise from aircraft. Microphone
techniques have included acoustic mirrors [1,2], polar correlation [3–6], and phased arrays [7–13]. The theoretical foundation
of noise source location using cross-correlations of multiple microphone signals was established by Billingsley and Kinns [7].
Frequency-domain approaches for processing the microphone array data were introduced by Gramann and Mocio [8],
Mosher [9], and Humphreys et al. [10]. For the aforementioned noise source imaging methods, the output of the instrument is
a convolution between a known kernel (the point spread function) and the noise source distribution. The noise source
distribution has a presumed form, e.g., an array of monopoles. Recent studies by Brooks and Humphreys [14] and by
Dougherty [15] have proposed methods of deconvolution.

Sound emission from turbulent jets issuing from engine exhausts is of paramount interest to aircraft noise. The jet noise
source is extended, directional, and its spectral nature changes with emission angle. At low polar angles with respect to the
downstream axis, the spectrum is peaky, indicating strong temporal coherence; at large angles, the spectrum is flatter,
indicating weak temporal coherence. The transition is fairly distinct and the transition polar angle depends on the jet velocity.
It is around 601 for a high-subsonic jet—the focus of the present study. The different spectral shapes have raised the
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Nomenclature

a ambient speed of sound
b beam width, Vðx,x7b=2,oÞ ¼ 1

2 Vðx,x,oÞ
D jet diameter
f cyclic frequency
Gmn cross-spectrum matrix
IML integral of main lobe of point spread function
L axial extent of noise source region
‘mðxÞ distance of microphone m from source point x

K number of discrete sources
M number of microphones
R array radius
qðx,y,tÞ noise source strength
Sr Strouhal number = fD=U

t time
Tmn array response matrix

U jet velocity
Vðx,x,oÞ point spread function (PSF)
Wm, wm weight for microphone m

wm dimensionless weight for microphone m

x,x spatial coordinates
gmn complex coherence
y polar angle from jet axis
Ymn directivity matrix
l wavelength
mmn angular response of polar array
Fðx,oÞ array beamformer output
cðx,oÞ coherence-based source distribution
Cðx,oÞ spectrum-based source distribution
tm time delay for microphone m

ym polar angle of microphone m

ya average array polar angle
o radian frequency = 2pf

D. Papamoschou / Journal of Sound and Vibration 330 (2011) 2265–22802266
possibility of disparate noise source mechanisms, and distributions, for radiation at small and large angles [16,17]. To enable
such differentiation, imaging of the noise sources should employ an array with narrow polar aperture. However, even within a
reasonably small aperture, the sound pressure level spectrum changes significantly near the direction of peak emission. This
is illustrated by Fig. 1, which plots sound pressure level spectra within a narrow range of polar angle for noise emitted at small
and large angles from the jet axis. At low polar angle, the spectrum changes significantly within a few degrees, even though it
retains its coherent nature. At large polar angles the directivity of the spectrum is weak.

The goal of the current work is development of a methodology for imaging extended and directional noise sources such
that the resulting noise source maps are devoid to the extent possible of the array response and are self-consistent.
Self-consistency here means that spatial integration of the noise source gives the far-field auto-spectrum in a particular polar
direction. A further consideration, pertinent to jet noise, is allowing for the possibility that the noise source distribution is
different at small and large polar angles. This necessitates an array with small polar aperture. Although several past studies
have used microphone arrays to image jet noise [11–13], their apertures were too large to enable such differentiation, and
self-consistency was not addressed in a systematic manner.

To achieve self-consistency it will be shown that directionality must be incorporated in the formulation of the noise source
model. The resulting method is based on the complex coherence, rather than the cross-spectrum, of the pressure field. This
idea represents an extension of concepts presented in the seminal paper on polar correlation technique by Fisher et al. [3]
which was applied to model and full-scale jet noise data. The proposed methodology is inherently applicable to noise source
maps that have been ‘‘cleaned’’ of the effects of the array response. We present two such methods to clean the noise source
maps: deconvolution of the traditional delay-and-sum beamformer output and a direct spectral estimation method that
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Fig. 1. Variation of spectrum with polar angle from jet axis for a Mach 0.9 cold jet. (a) Direction of peak emission; (b) broadside direction.
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obviates delay-and-sum beamforming. Finally we comment on the measured polar coherence of the acoustic field and its
proper interpretation.

2. Formulation of directional source distribution

Consistent with the general approach used in several past studies (e.g., [3,7,12]), the jet noise source is approximated by a
one-dimensional distribution, along the jet axis x, of equivalent sources as viewed by a far-field observer. Fig. 2 illustrates the
linear source model and the location of the sensing microphones. We denote the source distribution qðx,y,tÞ, with y the polar
angle measured from location x. Inclusion of the polar angle explicitly in the formulation of the noise source facilitates
treatment of directive sources, as shown below. We assume an array aperture sufficiently small so that, for a fixed array
location, all the microphones sense the same type of noise source q. However, we allow for the possibility that the distribution
of q may be vary as the array moves from low to high polar angle, corresponding to the disparate spectra discussed in
Introduction.

Considering the linear source model of Fig. 2 and assuming spherical spreading in a quiescent medium with uniform speed
of sound a, the signal received by the mth microphone of the array is

pmðtÞ ¼

Z
L

1

‘mðxÞ
qðx,ymðxÞ,t�tmðxÞÞ dx (1)

where

tmðxÞ ¼
‘mðxÞ

a
(2)

is the retarded time from point x to microphone m. Integration is carried over the region of interestLwhere significant sound
sources are expected. The Fourier transform of the microphone output is

PmðoÞ ¼
Z
L

1

‘mðxÞ
e�iotmðxÞQ ðx,ymðxÞ,oÞ dx (3)

where Q ðx,y,oÞ is the Fourier transform of qðx,y,tÞ. In frequency-domain microphone array methods, the central parameter is
the cross-spectral matrix:

GmnðoÞ � oP�mðoÞPnðoÞ4 (4)

where o4 denotes time averaging. Substituting Eq. (3),

GmnðoÞ ¼
Z
L

Z
L

1

‘mðxÞ‘nðxÞ
eio½tmðxÞ�tnðxÞ�oQ�ðx,ymðxÞ,oÞQ ðx,ynðxÞ,oÞ4 dx dx (5)

The bracketed term is the cross-spectral density of the noise source and needs to be modeled. Here we assume a spatially
incoherent source distribution and, for reasons that will become apparent shortly, introduce a directivity matrixYmnðx,x,oÞ as
follows:

oQ�ðx,ymðxÞ,oÞQ ðx,ynðxÞ,oÞ4 ¼cðx,oÞYmnðx,x,oÞdðx�xÞ (6)

The functioncðx,oÞ represents a source distribution that is presumed independent of observation angle for a given position of
the narrow-aperture array. As mentioned above, we allow for the possibility that cðx,oÞmay be different at small and large
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Fig. 2. Linear distribution of noise sources and microphone array.
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polar angles of the array. Using Eq. (6), the cross-spectral matrix becomes

GmnðoÞ ¼
Z
L

1

‘mðxÞ‘nðxÞ
eio½tmðxÞ�tnðxÞ�cðx,oÞYmnðx,x,oÞ dx (7)

and its diagonal terms (auto-spectra) satisfy

GmmðoÞ ¼
Z
L

1

‘mðxÞ
2
cðx,oÞYmmðx,x,oÞ dx (8)

The necessity of including the directivity matrixYmnðx,x,oÞ in the formulation of the source cross-spectral density of Eq. (6) is
now evident. Without it, it would have been impossible for the right-hand side of Eq. (8) to match the directivity of the left-
hand side as exemplified in Fig. 1. A convenient form for the directivity matrix is

Ymnðx,x,oÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmmðoÞGnnðoÞ

p
‘mðxÞ‘nðxÞ (9)

Implied here is that all sources have identical directivity at a given frequency. Inclusion of the path lengths ‘mðxÞ and ‘nðxÞ
makesYmn a universal parameter, for a given jet, independent of microphone distances, provided that the microphones are in
the acoustic far field. This formulation naturally brings out on the left-hand side of Eq. (7) the complex coherence of the
pressure field,

gmnðoÞ �
GmnðoÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GmmðoÞGnnðoÞ
p (10)

Eq. (7) thus takes the form

gmnðoÞ ¼
Z
L

eio½tmðxÞ�tnðxÞ�cðx,oÞ dx (11)

Eq. (11) serves as the definition of the coherence-based source distribution cðx,oÞ. The normalization of the cross-spectral
density according to Eq. (10) was proposed by Fisher et al. [3] and Glegg [4] to account for the directivity of jet noise in the
implementation of the polar correlation technique. The diagonal terms of Eq. (11) satisfy

1¼

Z
L
cðx,oÞ dx (12)

Once the coherence-based noise source distribution has been obtained, the spectrum-based source distribution is calculated
from

Cðx,o,ymÞ ¼cðx,oÞYmmðx,x,oÞ ¼cðx,oÞGmmðoÞ‘2
mðxÞ: (13)

For a given array position, Eq. (13) provides the noise source distribution corresponding to each microphone polar angle ym.
It is evident from Eqs. (12) and (13) that axial integration of Cðx,o,ymÞ=‘mðxÞ

2 gives the auto-spectrum GmmðoÞ:Z
L

1

‘mðxÞ
2
Cðx,o,ymÞ dx¼ GmmðoÞ

Z
L
cðx,oÞ dx¼ GmmðoÞ

Therefore we have the desired self-consistent formulation for the directional noise source.
For the analysis that follows, it is convenient to introduce the array response matrix

Tmnðx0,oÞ ¼ eio½tmðx0Þ�tnðx0Þ� (14)

It describes the modeled coherence of the acoustic field for a point source at x=x0 (i.e., for cðxÞ ¼ dðx�x0Þ). Eq. (11) then takes
the form

gmnðoÞ ¼
Z
L

Tmnðx,oÞcðx,oÞ dx (15)

3. Methods for noise source imaging

In this section we discuss three methods for imaging the noise source: delay-and-sum beamforming based on the complex
coherence (rather than the cross-spectrum) of the acoustic field; deconvolution of the beamformer output; and direct
spectral estimation using a minimization algorithm. The latter method obviates delay-and-sum beamforming.

3.1. Coherence-based beamforming

In delay-and-sum beamforming, the array output is [14]

Fðx,oÞ ¼
XM

m ¼ 1

XM
n ¼ 1

WmWneio½tnðxÞ�tmðxÞ�GmnðoÞ (16)
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The microphone weights, Wm, are user-specified functions of o and x. On selecting

Wm ¼
wmðx,oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GmmðoÞ
p

and recognizing that the exponential term (steering matrix) is the complex transpose of the response matrix, Eq. (14), we
obtain the coherence-based beamforming output:

Fðx,oÞ ¼
XM

m ¼ 1

XM
n ¼ 1

wmwnT�mnðx,oÞgmnðoÞ (17)

Expressing the coherence in terms of the source distribution, Eq. (15),

Fðx,oÞ ¼
Z
L

XM
m ¼ 1

XM
n ¼ 1

wmwnTmnðx,oÞT�mnðx,oÞcðx,oÞ dx (18)

On defining the point spread function (PSF) as

Vðx,x,oÞ ¼
XM

m ¼ 1

XM
n ¼ 1

wmwnTmnðx,oÞT�mnðx,oÞ (19)

the coherence-based beamforming output becomes

Fðx,oÞ ¼
Z
L
cðx,oÞVðx,x,oÞ dx (20)

Eq. (20) shows that the array output is the convolution of the noise source distribution with the PSF. The PSF is not translation-
invariant (Vðx,x,oÞaVðx�x,oÞ), so care is needed to prevent spatial distortions of the apparent noise source because of the
spatial dependence of the PSF. This is possible to first order by preserving the integral under the main lobe of the PSF. This
integral is approximated here as the beam width bðx,oÞ times the height of the PSF:

IML ¼

Z
main lobe

Vðx,x,oÞ dx� bðx,oÞVðx,x,oÞ ¼D (21)

where D is the jet diameter or any other characteristic length scale. From Eq. (19),

Vðx,x,oÞ ¼
XM

m ¼ 1

XM
n ¼ 1

wmwn (22)

Therefore, the weights must satisfy

wmðx,oÞ ¼wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

bðx,oÞ

s
(23)

where wm are weight coefficients that satisfy
P

wm ¼ 1. The beamwidth bðx,oÞ can be estimated analytically or computed
numerically from Eq. (19).

3.2. Deconvolution

Now we attempt to invert Eq. (20) and extract the coherence-based source distribution cðx,oÞ. From a mathematical
standpoint, the weights wm are immaterial to this process as they cancel from both sides of Eq. (20). However, assigning
weights of special forms may aid in the numerical implementation of the inversion process. For simplicity we set wm=1, in
which case the beamforming output, Eq. (17), becomes

Fðx,oÞ ¼
XM

m ¼ 1

XM
n ¼ 1

T�mnðx,oÞgmnðoÞ (24)

and the PSF is

Vðx,x,oÞ ¼
XM

m ¼ 1

XM
n ¼ 1

Tmnðx,oÞT�mnðx,oÞ (25)

For a given frequency, the integral of Eq. (20) can be expressed as a summation over a finite number of sources K. Applying the
discretizations

Fðx,oÞ-Fi

Vðx,x,oÞ-Vki

cðx,oÞDx-ck
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Fig. 3. Scan region and region of interest for deconvolution algorithm.
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we obtain the linear system

Fi ¼
XK

k ¼ 1

Vikck (26)

The solution procedure generally follows the DAMAS approach of Brooks and Humphreys [14]. One distinction, however, is
that we use the Bayesian-based Richardson–Lucy inversion algorithm [21,22] which has found wide application in image
restoration. In the Richardson–Lucy method the point spread function Vðx,xÞ is assigned the meaning of a conditional
probability VðxjxÞ and the inversion relies on computing the inverse conditional probability VðxjxÞ. The advantage of
Richardson–Lucy over Gauss–Seidel, used in DAMAS, is that its output is inherently non-negative and does not depend on the
sequence of the equations. The iteration algorithm is

cðjÞk ¼cðj�1Þ
k

1PK
i ¼ 1 Vik

XK

i ¼ 1

VikFi

~F i

~Fi ¼
XK

k ¼ 1

Vikc
ðj�1Þ
k (27)

The spatial extent of the region investigated and the resolution of grid points are critical parameters for the success of the
deconvolution scheme. Important guidance comes from the deconvolution work of Brooks and Humphreys [14]. As shown in
Fig. 3, the investigation domain consists of two overlapping regions: the scan region over which Eq. (27) is applied and the
region of interest that includes the relevant noise sources. The scan region is larger than or equal to the region of interest. The
length of the scan regionL should be greater than the beam width and was selected to beL¼ 2b. For the present array it was
determined that b� 2l, therefore L¼ 4l. The region of interest was chosen as�5Doxo25D. The scan region was arranged
symmetrically over the region of interest, as shown in Fig. 3. The spatial resolution should be a fraction of the wavelength and
was set at Dx¼ 0:25l. However, at low frequencies where the wavelength is very large, the resolution was set at Dx¼ 0:01L.
The combined scheme for the resolution was

Dx¼minð0:01L,0:25lÞ

Typically, the method converged to a residual of 0.05 or less in 50 iterations, with slow improvement thereafter. The number
of iterations was set at 100.

3.3. Direct spectral estimation

An alternative to beamforming followed by deconvolution is the direct estimation of the source distribution from Eq. (15)

gmnðoÞ ¼
Z
L

Tmnðx,oÞcðx,oÞ dx

The left- and right-hand sides represent the measured and modeled coherence matrices, respectively. We seek a source
distributioncðx,oÞ that minimizes the error between these two matrices. Here we do not manipulate the phase of each signal
to steer the array in a particular direction. Instead, for each frequency, we minimize the errors between the independent
elements of the measured and modeled coherence matrices. Similar inversion approaches for the polar correlation technique
have been proposed by Tester et al. [5] and Fisher and Holland [6].

For M microphones, Eq. (15) contains ðM2�MÞ=2 distinct off-diagonal elements and one distinct diagonal element. The off-
diagonal elements contain real and imaginary parts, rendering the total number of independent values to be minimized

J¼M2�Mþ1

which equals 57 for M=8. Letting j be the index of the distinct real and imaginary values of gmn, we write Eq. (15) as follows:

gjðoÞ ¼
Z
L
cðx,oÞTjðx,oÞ dx (28)
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Upon the discretizations

cðx,oÞdx-ck

Tjðx,oÞ-Tjk

we have the following linear system for each frequency:

gj ¼
XK

k ¼ 1

ckTjk (29)

To proceed further we adopt the approach Blacodon and Elias [23] who addressed a similar situation with airframe noise
sources. Given that negative sources are not physical, a non-negative constraint is added by expressing the sources as

ck ¼ a2
k

This leads to the least-squares unconstrained minimization of the function

FðakÞ ¼
XJ

j ¼ 1

gj�
XK

k ¼ 1

a2
kTjk

�����
�����
2

(30)

The minimization is done iteratively using the restarted conjugate-gradient method of Shanno and Phua [24]. The number of noise
sources K is generally arbitrary and does not need to match the number of independent equations J. However, the best results were
obtained with K � J. For the results in this paper, K=J=57, and the sources were obtained on a fixed x-vector for all frequencies. The

error was quantified in terms of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=jjgjjj

q
and was around 0.2. The error in the diagonal terms was much smaller and around 0.05.

From Eqs. (19) and (20) we recognize that the deconvolution integral amounts to the Frobenius inner product of the direct
spectral estimation relation, Eq. (15), with the steering matrix T�mnðx,oÞ. In fact, one could generalize the deconvolution
problem by taking the inner product of Eq. (15) with any suitable matrix that would facilitate the inversion.

The direct spectral estimation method is computationally more expensive than the deconvolution because the conjugate-
gradient method searches in K directions to minimize the gradient. Typically the routine required about 20 function calls for
the gradient to be minimized. On the other hand, the method is attractive because its directness and simple formulation will
facilitate the incorporation of more advanced models for the noise source (e.g., sources with finite coherence length scales).

4. Experimental setup

4.1. Flow facility

Experiments were conducted in UCI’s Jet Aeroacoustics Facility, described in earlier publications [18]. The facility was
operated in single-stream mode with pure air, at ambient reservoir temperature, supplied to a convergent round nozzle with
exit diameter D=21.8 mm. The nozzle pressure ratio was 1.69 resulting in exit Mach number of 0.9 and exit velocity
U=287 m/s. The jet Reynolds number was 5 �105. In addition to the jet flow, a ‘‘point source’’ was obtained by four small
(1.6 mm diameter) impinging jets in an arrangement similar to that used by Gerhold and Clark [19]. The impinging jets were
supplied at a pressure ratio of 2.3. The resulting sound field had a moderate directivity, with the OASPL peaking at y¼ 901 and
falling off by 3 dB for y¼ 9017301.

4.2. Microphone array

The microphone phased array consists of eight 3.2 mm condenser microphones (Brüel & Kjær Model 4138) arranged on a
circular arc centered at the vicinity of the nozzle exit. Fig. 4 shows the array geometry. The polar aperture of the array was 301
and the array radius was 1 m. The choice of the 301 polar aperture represents a compromise between small angular extent
needed to resolve disparate noise sources and large angular extent required to maintain reasonable spatial resolution. Even
though spatial resolution improves with deconvolution, one cannot expect deconvolution to succeed if the resolution of the
image to be restored is severely degraded. The microphones were mounted on an arc-shaped holder and their angular spacing
was logarithmic, starting from 21 for microphones 1 and 2 and ending with 101 for microphones 7 and 8. Uneven microphone
spacing was used to mitigate the effects of spatial aliasing. The entire array structure was rotated around its center to place
the array at the desired observation angle. Positioning of the array was done remotely using a stepper motor. An electronic
inclinometer displayed the position of first microphone. The distances between the centers of the microphone protective
grids were measured with accuracy of 0.1 mm using a digital caliper. A geometric calibration procedure provided the radial
position of the array relative to the nozzle exit with accuracy of 2 mm.

The arrangement of the microphones inside the anechoic chamber, and the principal electronic components, is shown in
Fig. 4. The microphones were connected, in groups of four, to two amplifier/signal conditioners (Brüel & Kjær Nexus 2690-A-
OS4) with low-pass filter set at 300 Hz and high-pass filter set at 100 kHz. The four-channel output of each amplifier was
sampled at 250 kHz per channel by a multi-function data acquisition board (National Instruments PCI-6070E). Two such
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boards, one for each amplifier, were installed in a Pentium 4 personal computer. National Instruments LabView software was
used to acquire the signals. Time delays due to multiplexing in the data acquisition boards were measured by feeding the
same signal to all the channels. These delays were compensated for in the source imaging algorithms.

Phase calibration for each microphone entailed placing the microphone against a reference microphone, ensuring perfect
symmetry of the cartridge placement as illustrated in Fig. 5. The combination of the two microphones was placed at normal
incidence to the far-acoustic field of the Mach 0.9 jet. The cross-spectral density between the two microphones was computed
and its phase was plotted versus frequency. Fig. 5 shows a typical phase plot. It is seen that the relative phase is practically
zero for all measured frequencies, indicating that there were no significant phase calibration errors.
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The array observation angle is defined as ya ¼ ðy1þy8Þ=2. This paper discusses results obtained at two array observation
angles: ya ¼ 301 and 1051. The placement of the microphones for each observation angle is plotted in Fig. 6.

4.3. Data processing

The computation of the cross-spectrum matrix, Eq. (4), involved the following steps. Each microphone signal consisted
of Ns=218=262 144 samples acquired at a sampling rate Fs=250 kHz. The maximum resolvable (Nyquist) frequency was
Fs/2=125 kHz, although the high-pass filter was set a little lower at f=100 kHz. The size of the fast Fourier transform was
NFFT ¼ 2048 yielding a frequency resolution of 122 Hz. Each signal was divided into K=64 blocks of 4096 samples each, and
the data within each block was windowed using a Hamming window. The cross-spectrum matrix Gk

mn for block k was
computed using Fortran routines for auto-spectra and cross-spectra. The total cross-spectrum matrix was obtained from

Gmnðf Þ ¼
1

KWh

XK

k ¼ 1

Gk
mnðf Þ (31)

where Wh is a weighting constant for the Hamming window. Since the cross-spectrum matrix is Hermitian, only the diagonal
and upper-triangle elements were computed; the lower-triangle elements were calculated as complex conjugates of the
upper-triangle elements.

In calculating the spectrum-based source distribution, Eq. (13), the raw auto-spectrum Gmmraw undergoes corrections to
render it in lossless form. These corrections are performed in units of decibels:

10log10½GmmðoÞ� ¼ 10log10½Gmmraw ðoÞ�þ93:98�Cfrðf Þ�Cff ðf Þþaðf ÞRm (32)

The constant 93.98 comes from the normalization of the pressure by the reference pressure of 20 mPa, that is,
�20log10ð20� 10�6

Þ ¼ 93:98. Cfr and Cff are the corrections for the actuator response and free-field response, respectively;
they are based on data provided by the manufacturer of the microphones. a is the atmospheric absorption coefficient (dB/m),
computed using the formulas proposed by Bass et al. [20] for the measured values of relative humidity and temperature of the
ambient air.

5. Results

5.1. Point sources

We first evaluate the performance of the inversion schemes for synthetic and physical point sources. The synthetic source
is effectively a Dirac delta function placed at x¼ xs. Eqs. (15) and (20) take, respectively, the forms

Tmnðxs,oÞ ¼
Z
L

Tmnðx,oÞcðx,oÞ dx

and

Vðx,xs,oÞ ¼
Z
L
cðx,oÞVðx,x,oÞ dx

Their inversion should yield

cðx,oÞ ¼ dðx�xsÞ

The physical point source was created by the impinging jets described in Section 4.1, and was imaged with the microphone
array at position ya ¼ 1051 (Fig. 6b). Both the synthetic and physical point sources were located at xs=0. In Fig. 7 we plot the
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axial distribution of the coherence-based source distribution, cðxÞ, at f=10 kHz (Sr¼ 0:77), for the synthetic and physical
point sources. We examine the outputs of the delay-and-sum beamformer, the deconvolution, and the direct spectral
estimation. The deconvolution and direct spectral estimation techniques yield a five-fold improvement in spatial resolution
compared to the delay-and-sum beamformer. The results are similar for the synthetic and physical point sources; small
deviations in the beamforming output for the latter source arise from its finite volume and weak directivity.
5.2. Jet sources

We start with presentation of maps of the coherence-based source distributions cðx,oÞ as viewed from the two array
positions of Fig. 6. Fig. 8 shows the source distributions based on delay-and-sum beamforming. The noise maps are subject to
blurring and distortions from the point spread function. It will be seen that the differences in the source maps at ya ¼ 301 and
1051 are due mainly to the variance in PSF between the two angles.

Fig. 9 shows the corresponding source maps after Richardson–Lucy deconvolution. The results are now much clearer and
confined, and do not show major differences between the two array angles. The results of the direct spectral estimation are
shown in Fig. 10. They agree well with the results obtained by the Richardson–Lucy deconvolution in Fig. 9. This is expected
because, as mentioned earlier, the deconvolution integral amounts to the inner product of the direct spectral estimation
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relation with the array steering matrix. Nevertheless, the similarity in the results of the two methods inspires confidence that
both methods are producing reasonable noise source maps.

For both the deconvolution and direct spectral estimation methods, the noise source maps are clean up to about Sr¼ 3,
above which weak ‘‘ghost’’ images appear. The appearance of ghost images is due to errors in the assumed positions of the
microphone. At f=50 kHz, an error as small as 1 mm in the radial position of the microphone causes a 521 shift in the phase.
Therefore, for Sr43 the levels in the main map start becoming inaccurate because the axial integration in Eq. (20)
(deconvolution) or Eq. (15) (direct spectral estimation) includes the ghost images. The expectation is that the intensity of the
noise sources should increase as their extent becomes smaller with increasing frequency.

Now we examine the spectrum-based source distribution, obtained from Eq. (13). Figs. 11 and 12 show contour maps of
Cðx,oÞ for microphone angles y¼ 241 and 1051, respectively. For each microphone angle, maps generated by the three
techniques are shown on the same dynamics range. Values outside the dynamics range are plotted white. The beamformer
output produces axially stretched images with significant sidelobes. The Richardson–Lucy deconvolution and direct spectral
estimation techniques yield almost identical results, with substantial improvements in fidelity. Notable are the sharp cutoffs
at x=0 for Sr40:5 and the absence of sidelobes. For both angles, the location of the strongest noise source occurs at x=D� 5,
which corresponds to the region near the end of the primary potential core for this jet. The corresponding Strouhal numbers
are Sr=0.2 for y¼ 241 and Sr=0.5 for y¼ 1051. For all maps, the location of peak noise moves toward the nozzle exit as the
frequency increases.
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5.3. Spatial coherence of acoustic field

The results of Figs. 9 and 10 show a strong similarity between noise sources emitting at small and large angles relative to
the jet axis. Here we investigate how this finding may affect the polar coherence of the far-acoustic field. Past studies that
measured the coherence of the acoustic field, for example Tam et al. [17], noted strong polar coherence for noise emitted in
the direction of peak emission and weak polar coherence for noise emitted at large angles. Although this appears consistent
with the potentially disparate noise sources discussed in Introduction, interpretation of the spatial coherence of the acoustic
field must take into account geometric path length effects inherent to the design of the instrument that images the noise
sources, in this case the microphone array.

The response of the microphone array is a function of the arrangement of the microphones and of the assumed model for
the acoustic source. For the spatially incoherent source model described in Section 2, the response of the array is given by
Eq. (14). In terms of the path lengths ‘, it takes the form

Tmnðx,oÞ ¼ eiðo=aÞ½‘mðxÞ�‘nðxÞ�:

Consider the polar microphone arrangement of Fig. 13. From the geometry,

‘mðxÞ
2
¼ R2�2Rx cosymþx2
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For Rbx, we can make the following approximation:

‘mðxÞ�‘nðxÞ ¼
‘mðxÞ

2
�‘nðxÞ

2

‘nðxÞþ‘mðxÞ
�

2Rxðcosyn�cosymÞ

2R
¼ xðcosyn�cosymÞ

The last term brings out the angular response of the polar array:

mmn ¼ cosyn�cosym ¼ 2sin
ym�yn

2

� �
sin

ymþyn

2

� �
(33)

We note that the response of the microphone array depends not only on the separation angle Dy¼ yn�ym but also on the
average angle ðymþynÞ=2 of any pair of microphones. The latter term causes a slow response with Dy at shallow polar angles
and a fast response at polar angles near 901. For a polar arrangement of microphones, therefore, Eq. (15) can be approximated
as

gmnðoÞ ¼
Z
L

exp i
ox

a
mmn

� �
cðx,oÞ dx (34)

If the source distribution cðx,wÞ is similar at small and large observation angles, as Figs. 9 and 10 suggest, then the coherence
gmnðoÞ should collapse when plotted against the array angular response parameter mmn. Fig. 14 plots the coherence modulus
jgmnj versus angular separation yn�ym and versus the array angular response parameter for array polar angles ya ¼ 301 and
1051, and for Strouhal numbers Sr=1 and 3. All the non-trivial permutations of ym and yn are included. The coherence versus



x

lm (x)

R

θm

Microphone m

Fig. 13. Geometry of polar arrangement of microphones.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

|γ m
n|

θ
n-θm  (rad)

θa=30°
θa=105°

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

|γ
m

n|

θ
n-θm  (rad)

θa=30°
θa=105°

Sr=3

Sr=1

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

|γ
m

n|

2sin[(θn-θm)/2]sin[(θn+θ
m)/2]

θa=30°
θa=105°

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

|γ
m

n|

2sin[(θn-θm)/2]sin[(θn+θ
m)/2]

θa=30°
θa=105°

Fig. 14. Coherence magnitude of acoustic field versus angular separation and versus array angular response parameter for two Strouhal numbers.

D. Papamoschou / Journal of Sound and Vibration 330 (2011) 2265–22802278



D. Papamoschou / Journal of Sound and Vibration 330 (2011) 2265–2280 2279
angular separation plots replicate the trends seen by previous investigations [17], namely that the coherence decays rapidly
with Dy at large angles and slowly at shallow angles. However, when the coherence is plotted against the array angular
response parameter the distributions for the two array observation angles practically collapse.

A correlation similar to that of Fig. 14 (right column) was performed by Fisher et al. [3] for their polar correlation data. They
plotted the coherence magnitude and phase versus the parameterm¼ cosy2�cosy1, which is the array angular response with
two microphones (Eq. (33)), microphones 1 and 2 being the reference and traversable microphones, respectively. They
observed a collapse of the coherence plots for small and large observation angles of the reference microphone. The reader is
instructed to compare Fig. 14 of the present paper with Fig. 12 of Ref. [3]. The provisional conclusion of Ref. [3] was that the jet
mixing noise source distributions are independent of observation angle. It is noteworthy that the present correlations, using
multiple microphones and all their mutual coherences (i.e., there is no ‘‘reference’’ microphone), confirm this important
finding of Ref. [3].

6. Conclusions

This study relates to the imaging of noise sources that are distributed and strongly directional, such as in turbulent jets.
The goal is to generate high-resolution noise source maps with self-consistency, i.e., their integration over the extent of the
noise source region gives the far-field pressure auto-spectrum for a particular emission direction. The jet noise source is
modeled as an axial distribution of spatially incoherent point sources. For self-consistency, it is necessary to include a
directivity matrix in the formulation of the source cross-spectral density. The resulting source distribution is based on the
complex coherence, rather than the cross-spectrum, of the measured acoustic field.

Three coherence-based imaging methods were applied to a Mach 0.9 turbulent jet: delay-and-sum beamforming;
deconvolution of the beamformer output, based on the Richardson–Lucy inversion; and direct spectral estimation that uses a
conjugate-gradient method to minimize the difference between the measured and modeled coherences of the acoustic field.
The jet was imaged at small and large angles relative to the downstream axis using an eight-microphone array with 301
angular aperture.

The delay-and-sum beamformer generates noise source maps with strong spatial distortions and sidelobes. Deconvolu-
tion leads to a five-fold improvement in spatial resolution and significantly reduces the intensity of the sidelobes. The direct
spectral estimation produces maps very similar to those obtained by deconvolution. The two techniques are in fact related:
the deconvolution integral amounts to the tensor inner product of the direct spectral estimation relation with the array
response matrix. Although the direct spectral estimation is computationally more demanding than the deconvolution, its
directness makes it an attractive tool for more complex noise source models.

The coherence-based noise source maps, obtained by deconvolution or direct spectral estimation, are similar at small and
large observation angles relative to the jet axis. The apparent independence of the noise source distribution on observation
angle is further supported by the collapse of the polar coherence of the acoustic field when plotted against the angular
response parameter of the microphone array.
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