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Abstract The time accuracy of the exponentially accu-
rate Fourier time spectral method (TSM) is examined and
compared with a conventional 2nd-order backward differ-
ence formula (BDF) method for periodic unsteady flows. In
particular, detailed error analysis based on numerical com-
putations is performed on the accuracy of resolving the local
pressure coefficient and global integrated force coefficients
for smooth subsonic and non-smooth transonic flows with
moving shock waves on a pitching airfoil. For smooth sub-
sonic flows, the Fourier TSM method offers a significant
accuracy advantage over the BDF method for the predic-
tion of both the local pressure coefficient and integrated
force coefficients. For transonic flows where the motion of
the discontinuous shock wave contributes significant higher-
order harmonic contents to the local pressure fluctuations,
a sufficient number of modes must be included before the
Fourier TSM provides an advantage over the BDF method.
The Fourier TSM, however, still offers better accuracy than
the BDF method for integrated force coefficients even for
transonic flows. A problem of non-symmetric solutions for
symmetric periodic flows due to the use of odd numbers of
intervals is uncovered and analyzed. A frequency-searching
method is proposed for problems where the frequency is not
known a priori. The method is tested on the vortex shedding
problem of the flow over a circular cylinder.
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1 Introduction

Time dependent calculations are needed for various impor-
tant applications, such as the study of the internal flow of
turbomachinery, flutter, and jet noise [1–5]. Time accuracy
is also needed for large eddy simulation of turbulence-
generated noise [6,7] and particle-turbulence interactions
[8,9]. In addition to improvements in computer hardware,
improvements in numerical methods also play a significant
role in reducing the computational cost of time dependent
calculations. A dual-time stepping method that was origi-
nally developed by Jameson [10] has been successful for
unsteady flow computations using both the Euler and the
Navier–Stokes equations [11]. Although local pseudo-time
stepping, residual smoothing, and multigrid method can be
used to accelerate convergence, the computational efficiency
of this method is limited. The backward difference formula
(BDF) method for the time discretization only provides time
accuracy of algebraic orders, specifically 2nd-order for the
usual fully implicit three-level BDF scheme. Thus, small real
time steps are needed due to the time accuracy requirement.

For periodic flows, an alternative method for real time dis-
cretization is to represent flow variables with Fourier series.
One of the earliest methods in this category is a linearized
method proposed by Hall and Crawley [12]. In this method
each flow variable is assumed to be a sum of the time-
averaged value and a small perturbation. Based on the small
perturbation assumption, the flow governing equation can be
simplified and separated into two sets of equations. One is
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for the time-averaged variables, and the other is for the small
perturbation components. Coefficients in the latter can be
obtained by solving the former. Then the small perturbation
components are assumed to be harmonic functions with the
known frequency.

To develop an efficient method that can account for
nonlinear effects, Ning and He [13] proposed a nonlinear
harmonic method. In this method, each flow variable is still
expressed as a sumof the time-averaged value and a harmonic
perturbation. However, when the nonlinear flow equations
are time-averaged, extra “unsteady stress” terms are gener-
ated in the time-averaged equations. These extra terms are
computed from the solution of the unsteady perturbation
equations, while the coefficients of the perturbation equa-
tions are determined by the solution of the time-averaged
equations. The two sets of equations are solved simultane-
ously in a strongly coupled manner. Numerical results show
that nonlinear effects, such as oscillation of shock waves, can
be efficiently modeled by the nonlinear harmonic method.

The nonlinear harmonic method was among the earliest
methods that account for a nonlinear effect by reserving extra
“unsteady stress” terms in the time-averaged equations.How-
ever, the unsteadiness is still evaluated by the first harmonic
mode only. Harmonic modes with higher frequencies are not
involved. Therefore, the effectiveness of this method is lim-
ited for large and complex temporal variations. In addition,
the formulation of the method requires a lot of effort, espe-
cially for three-dimensional viscous unsteady flow problems.
To develop amethod that includesmore harmonicmodes and
can be easily applied in engineering practice, Hall et al. [14]
proposed the harmonic balance method based on expanding
flowvariableswith Fourier series. In thismethod the real time
derivative term is approximated by the time spectral opera-
tor. Fast Fourier transform (FFT) and its inverse counterpart
are used in the time spectral operator. The resulting equa-
tions on all instants are solved simultaneously in time domain
and they are coupled only through the time spectral operator.
Since the approximated real time derivative term reduces to a
source term, pseudo-time marching method for steady-state
calculation can be employed. Convergence accelerating tech-
niques, such as local time step and the multigrid method, can
be applied during the pseudo-time marching process without
affecting time accuracy. The harmonic balance method has
been successfully applied in solving two-dimensional vis-
cous flow past cascades. Computational results show that
the method is efficient. Strong nonlinear effects, such as
oscillation of shock waves can be accurately predicted if
the time resolution is sufficiently high. Gopinath et al. [15]
applied the harmonic balancemethod to the computation of a
three-dimensional unsteady flow insidemulti-stage turboma-
chinery. In this computation only one blade passage is used
for each blade row. The use of the harmonic balance method
greatly reduced the overall cost of the simulation. The dom-

inant unsteadiness and the main flow features, such as the
interaction between two blade rows, are captured efficiently.
In their study, Ekici et al. [16] completed the computations
of three-dimensional periodic inviscid flows around a heli-
copter rotor using the harmonic balancemethod. Themethod
was reported to be able to resolve significant unsteady flow
features with low computational cost. Since the equations
resulting from the harmonic balance method are well-suited
for adjoint sensitivity analysis, rotor optimization including
improvement of aerodynamic performance and noise reduc-
tion can be conveniently conducted.

There were also other ways to calculate periodic flows
based on the Fourier expansion of flow variables. A non-
linear frequency domain solver was proposed by McMullen
et al. [17], which is equivalent to the harmonic balance
method. With this solver the governing equations are solved
in the frequency domain rather than the time domain. How-
ever, the residual is still calculated in the time domain for
simplicity. Transformations between the time domain and
the frequency domain for both solutions and residuals are
required. This method has been shown to be efficient in
solving transonic flows past a pitching airfoil and the vor-
tex shedding flow behind a circular cylinder at rest. A paper
by Gopinath and Jameson [18] derived the explicit formula
of the approximated real time derivative using the idea of har-
monic balancemethod. Since discrete Fourier transformation
and its inverse counterpart are not required in computation,
the resulting equations are solved completely in the time
domain. For this reason, this variant of the harmonic balance
method is called the time spectral method (TSM). We call
this method the Fourier TSM since it is based on the Fourier
expansion of flow variables. The samework byGopinath and
Jameson [18] also pointed out that stability problem may be
caused by the use of even numbers of intervals in a period.
Thus, using odd numbers of intervals seems to be favorable.
However, we found that non-symmetric solutions are pro-
duced for symmetric problems if a period is split into odd
numbers of intervals. This problem has not been reported
before. We analyze the reason for this problem, and based
on that, we propose the requirements to ensure symmetric
solutions.

The study by McMullen and Jameson [19] estimated the
computational efficiency of the nonlinear frequency domain
solver, which is equivalent to the Fourier TSM. The non-
linear frequency domain method is demonstrated to be much
more efficient than the 2nd-order BDFmethod. However, the
evaluation is limited to analyzing the error of the computed
integration quantities of the surface pressure coefficient, such
as the lift coefficient and the moment coefficient. To more
comprehensively evaluate the efficiency advantage of the
Fourier TSM over the 2nd-order BDF method, we here con-
duct a systematic error analysis on the computed temporal
variation of the surface pressure coefficient itself.
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For the periodic flows where the frequency is not known
a priori, such as vortex shedding flows, a gradient-based
method has been used successfully to search for the fre-
quency [17,18]. However, the initial guess of the frequency
must be close to the correct value since the method is locally
optimal. A new method that updates the frequency based
on Fourier analysis of the lift coefficient before using the
gradient-based method is developed. So the initial guesses
of the frequency that are far away from the correct value can
be used.

In the following sections, firstly, the Fourier TSM is
derived and validated with a transonic flow over the pitching
NACA0012 airfoil. For symmetric flow problems, the non-
symmetric solutions produced by the use of odd numbers of
intervals are discussed. Then error analysis on the surface
pressure coefficient and its integration quantities using both
the Fourier TSM and the 2nd-order BDF is conducted for
transonic flows as well as subsonic flows. Finally, the new
frequency search approach is proposed and applied in con-
junction with the Fourier TSM to a vortex shedding flow
behind a circular cylinder at rest.

2 The Fourier time spectral method (TSM)

The Navier–Stokes equations for a two-dimensional com-
pressible viscous flow can be written as

∂w

∂t
+ ∂ f c

∂x
+ ∂ gc

∂y
− ∂ f v

∂x
− ∂ gv

∂y
= 0, (1)
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(3)

In the preceding equations, t is time, x and y are position
coordinates, ρ is density, p is pressure, (u, v) is the local
flow velocity. The total energy is E = e + 1

2 (u
2 + v2) with

internal energy e = p
(γ−1)ρ . γ is the ratio of specific heat.

(ū, v̄) = (u − ub, v − vb) stands for the local convective
velocity relative to the control surface moving at the velocity
of (ub, vb). The components of the viscous stress tensor and
those of the heat flux vector are defined as below
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[
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− 1
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Pr
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,

(4)

where μ is the molecular viscosity, which is calculated by
Sutherland’s law. Pr is the Prandtl number, h = e + p

ρ
is

enthalpy.
If the unsteady flow is periodic, then the flow solution

vector w can be expanded using the Fourier series as below

w(t) =
+∞∑
−∞

w̃ke
ikωt , (5)

whereω is the fundamental angular frequency of the periodic
flow. The Fourier coefficient w̃k can be calculated as

w̃k = ω

2π

∫ 2π
ω

0
w(t)e−ikωtdt, k = 0,±1,±2, . . . . (6)

If finite harmonic modes are retained in the series of Eq. (5),
discrete Fourier transform (DFT) pair can be constructed.
Assume a period is equally divided into N intervals, then
the solution vectors on the left N instants form the following
time sequence, which is the extended solution vector

w∗ = [w0, . . . , wn, . . . , wN−1]T. (7)

The DFT on the above extended solution vector is written as

w̃k = 1

N

N−1∑
n=0

wne
−ikωn�t , (8)

where �t = 2π
ωN . If N is odd, the inverse DFT (IDFT) is

written as

wn =
N−1
2∑

k=− N−1
2

w̃ke
ikωn�t . (9)

When N is even, the inverse DFT is modified as

wn =
N
2 −1∑

k=− N
2

w̃ke
ikωn�t . (10)
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In matrix form, the DFT in Eq. (8) can be expressed as

w̃∗ = Ew∗, (11)

where E is the DFT operator matrix. w̃∗ is the Fourier coef-
ficient vector of solution. If N is odd,

w̃∗ =
[
w̃0, w̃−1, . . . , w̃− N−1

2
, w̃ N−1

2
, . . . , w̃1

]T
. (12)

When N is even, w̃∗ becomes

w̃∗ =
[
w̃0, w̃−1, . . . , w̃− N

2 +1, w̃− N
2
, w̃ N

2 −1, . . . , w̃1

]T
.

(13)

For the IDFT in Eq. (9) or Eq. (10), it can be expressed in
matrix form as

w∗ = E−1w̃∗, (14)

where E−1 is the IDFT operator matrix.w∗ and w̃∗ form the
DFT pair for flow solution. Since the first-order derivative of
a periodic function is also a periodic function, the DFT pair
for the time derivative of flow solution can be constructed as
well. The corresponding DFT and IDFT are

w̃(1)∗ = Ew(1)∗ (15)

and

w(1)∗ = E−1w̃(1)∗, (16)

where the extended vector in time domain w(1)∗
= [ ∂w

∂t |0, . . . , ∂w
∂t |n, . . . , ∂w

∂t |N−1]T, and w̃(1)∗ is the Fourier
coefficient vector for the time derivative of flow solution. The
k-th element of w̃(1)∗ can be calculated from the k-th element
of w̃∗ through the following relation:

w̃
(1)
k = ikωw̃k . (17)

Written in matrix form, w̃(1)∗ can be formulated as

w̃(1)∗ = iωNF w̃
∗, (18)

where NF is a diagonal matrix. If N is odd, NF =
diag(0,−1, . . . ,− N−1

2 , N−1
2 , . . . , 1). When N is even, NF

= diag(0,−1, . . . ,− N
2 + 1, 0, N

2 − 1, . . . , 1).
In TSM, the extended time derivative vector w(1)∗ can be

calculated from w∗ through DFT and IDFT as below

w(1)∗ = E−1w̃(1)∗ = iωE−1NF w̃
∗ = iωE−1NF Ew∗ = Fw∗,

(19)

where F denotes the time spectral operator,which is an N×N
matrix. If N is even, the DFT and IDFT can be replaced by
FFT and IFFT so as to evaluate the time spectral operator
efficiently. The element at the l-th row and the n-th column
of the time spectral operator matrix, Fl,n (0 ≤ l, n ≤ N −1),
can be expressed as

Fl,n = ω

N

N
2 −1∑

k=− N
2 +1

ike
2πik
N (l−n)

=
⎧⎨
⎩

ω

2
(−1)(l−n) cot[π(l − n)

N
], l �= n,

0, l = n.

(20)

Note that the fundamental angular frequency of a periodic
flow problem ω is an explicitly specified parameter inside
the time spectral operator.

Following the method of lines, the unsteady governing
equation (1) can be integrated over grid cells using the cell-
centered finite volume method. The governing equations in
the semi-discrete form on N equally spaced instants can be
collected together and written as

dw∗

dt
+ R(w∗) = 0. (21)

Using the Fourier TSM to solve the above equation, the
time derivative term of the equation can be approximated by
the time spectral operator. The resultant equation becomes

Fw∗ + R(w∗) = 0. (22)

The above equation takes the form of governing equation
for steady problems. There is no explicit time derivative and
the time derivative term reduces to a source term. To solve
such a system, pseudo-time marching technique is usually
adopted. Introducing the pseudo-time τ , the final equation to
be solved is

dw∗

dτ
+ Fw∗ + R(w∗) = 0. (23)

In Eq. (23), R(w∗) is calculated by the Jameson-Schmidt-
Turkel (JST) scheme [20]. The pseudo-time marching pro-
cess is conducted by a five-stage explicit Runge–Kutta
scheme because of its extended stability range. The fully
discretized governing equations on all instants are cou-
pled only through the time spectral operator and are solved
simultaneously in time domain as in Ref. [14]. Conver-
gence acceleration technique, such as local time stepping and
multigrid method, can be used during pseudo-time marching
without losing time accuracy.
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3 Application to the pitching airfoil test case

The periodic flows over a pitching NACA0012 airfoil at
transonic flow conditions are frequently used as test cases
for unsteady solvers. For this reason, the Fourier TSM is
validated by solving an inviscid test case of this kind. Com-
putational results using the Fourier TSM is also compared
with those using the BDFmethod. In the present inviscid test
case, a NACA0012 airfoil is forced to pitch around its quar-
ter chord at M∞ = 0.755. The forced pitching movement is
given by

α = α0 + αm sinωt, (24)

where α0 is the mean angle of attack, αm the pitching ampli-
tude. ω is the angular frequency and is related to the reduced
frequency κ as

κ = ωc

2U∞
, (25)

where c is the chord length andU∞ is the free-stream veloc-
ity. In this case, α0 = 0.016◦, αm = 2.51◦, and κ = 0.0814.
The periodic inviscid flow in this test case is calculated on a
161 × 33 O-type grid. The convergence criteria is set to be
1 × 10−14. To implement the Fourier TSM, three different
time resolutions are used. One period is equally split into 8,
16, or 32 intervals, respectively. For the BDF method, 32 or
64 equal intervals are used.

The computed lift and moment coefficient variations with
respect to the angle of attack are shown in Fig. 1. The experi-
mental data atReynold’s number Re = 5.5×106 [21] are also
shown to demonstrate the same general agreement between
the computations and the experiment as found in Gao et al.
[22,23], despite the noticeable differences due to negligence
of viscous and turbulence effects by the Euler equations. The
purposeof this paper is to investigate the time spectralmethod
vs. the conventional BDF time-marchingmethod in resolving

time evolution for the Euler equations. Therefore, the compu-
tational result using the BDF method with 64 time intervals
is used as the benchmark accurate solution in the following
discussions. Figure 1a shows that for the lift coefficient, the
computational result using the Fourier TSM only with eight
intervals agrees very well with the accurate solution. For the
moment coefficient, Fig. 1b shows that the computational
results using the Fourier TSM converge fast to the accurate
solution as time resolution increases. However, to predict
well all details of the temporal variation of the moment coef-
ficient, at least 16 intervals are needed for the Fourier TSM.
Compared to the temporal variation of the lift coefficient,
that of the moment coefficient is more complicated. Hence,
to reach the same level of accuracy, more intervals (more
Fourier modes in the frequency domain) are required for the
Fourier TSM to calculate the latter.

As for the temporal variation of the surface pressure
coefficient distribution, it is convenient to show it in fre-
quency domain. The time-averaged component and the first
three modes are shown in Figs. 2, 3, 4, and 5. Computa-
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Fig. 2 Inviscid flow over pitching NACA0012 airfoil: time-averaged
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Fig. 1 Inviscid flow over pitching NACA0012 airfoil: lift and moment coefficients versus angle of attack. a Lift coefficient. bMoment coefficient
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Fig. 3 Inviscid flow over pitching NACA0012 airfoil: first mode of surface pressure coefficient. a Real component. b Imaginary component
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Fig. 4 Inviscid flow over pitching NACA0012 airfoil: second mode of surface pressure coefficient. a Real component. b Imaginary component
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Fig. 5 Inviscid flow over pitching NACA0012 airfoil: third mode of surface pressure coefficient. a Real component. b Imaginary component

tional results as well as experimental data [21] all reveal
that the range of the shock wave movement is approxi-
mately 0.2 < x/c < 0.6. Within this area, the Fourier
TSM with eight intervals in a period can only reasonably
predict the time-averaged component of the surface pres-
sure coefficient. When time resolution increases to have 16
intervals in a period, the Fourier TSM could also generally

resolve the first mode, the second mode and the real com-
ponent of the third mode. For the imaginary component of
the third mode, Fig. 5b shows that the computational result
using the Fourier TSM with 16 intervals deviates dramati-
cally from the accurate solution. To make improvement on
this, 32 intervals are needed. Outside the shock wave move-
ment area (x/c < 0.2 or x/c > 0.6), the Fourier TSM with
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only eight intervals could perfectly resolve the time-averaged
component and all three modes of the surface pressure coef-
ficient. This is because in the shock-free area, the temporal
variation of the surface pressure coefficient is smooth, its
Fourier modes with high frequencies decay rapidly. Thus,
only retaining the first three modes(corresponding to eight
intervals) is sufficient for the Fourier TSM to obtain accurate
computational results. Since the temporal variation of the sur-
face pressure coefficient could be perfectly predicted in most
area, the Fourier TSMwith only eight intervals is able to cal-
culate accurately the integration quantities, in particular the
lift coefficient. For the moment coefficient, the accuracy loss
of the surface pressure coefficient in the area of shock wave
movement only affects some details of its temporal variation.
The general trend and the range of the temporal variation are
about correct.

4 Non-symmetric solutions of symmetric problems
due to odd numbers of intervals

When the Fourier TSM is applied to solve periodic flow
problems, proper time resolution should be carefully selected
to balance accuracy of the solution and computational cost.
Another important issue is whether the number of intervals
is even or odd. Gopinath and Jameson [18] pointed out that
the use of an even number of intervals may cause stability
problem for the Fourier TSM, particularly in the cases where
the time derivative is significant, such as high RPM turboma-
chinery problems. This is because the odd-even decoupled
solution may be allowed when the Fourier TSM is applied
with an even number of intervals. Thus, using odd numbers of
intervals seems to be favorable. However, we found that the
Fourier TSMproduces non-symmetric solutions for symmet-
ric flowproblems if an odd number of intervals are employed.
To illustrate this, a symmetric flow problem is constructed
from the previous test case and is solved by the Fourier TSM.
In this symmetric flowproblem, the airfoil still pitches around
its quarter chord point. All the flow conditions remain the
same except that the mean angle of attack is set to be zero.
Under these flow conditions, the periodic flow past the air-
foil is symmetric given that the airfoil is symmetric. For this
symmetric flow, the distribution of the surface pressure coef-
ficient on the upper surface should be perfectly symmetric
to or overlap that on the lower surface in frequency domain.
The computed time-averaged component and the first three
Fourier modes are shown in Figs. 6, 7, 8, and 9, respectively.
For the Fourier TSM, seven or eight intervals are used. The
solution obtained by theBDFmethodwith 32 intervals serves
as a reference solution. It is observed thatwhen eight intervals
are used, the solution from the Fourier TSM is symmetric,
just like the reference solution. This is true for any Fourier
mode of the pressure coefficient in any surface area.Whereas,
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if seven intervals are employed, non-symmetric solution is
produced by the Fourier TSM, especially in the area where
shock wave moves. Outside the area of shock wave move-
ment, the solution is still non-symmetric and the asymmetry
becomes quite weak.

Whether the asymmetry of the solution using seven inter-
vals in a certain area is obvious or not actually depends on
if seven intervals are sufficient to resolve the local unsteady
flow. The computational results of the previous test case for
validation have shown that using eight intervals could only
retain three Fourier modes in the Fourier TSM. This is not
sufficient to resolve the shockwavemovement. Thus, the cal-
culated surface pressure coefficient exhibits dramatic error in
the area where shock wave moves. Using seven intervals can
only retain the first three Fourier modes in the Fourier TSM
as well. Thus, the error of the computed surface pressure
coefficient is also high in the same surface area. This is why
the asymmetry of the solution using seven intervals is obvi-
ous. It can be anticipated that if time resolution is increased
so as to retain more Fourier modes in the Fourier TSM, the
asymmetry of solutions using odd numbers of intervals will
decrease in the area of shock wave movement.

Actually, the problemof non-symmetric solution of a sym-
metric problem due to the use of odd numbers of intervals
is not limited to the Fourier TSM. Numerical experiments
have confirmed that the same problem also happens to the
BDF method. The reason for this problem is not associated
with the specific method of time discretization, but lies in the
way independent instants (not including the one at the end of
a period) are distributed in a period. To guarantee symmet-
ric solutions for symmetric flow problems, we propose that
the distribution of independent instants should satisfy the fol-
lowing requirements. All independent instants should be able
to be grouped into pairs, and the phase difference between
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Fig. 7 Symmetric inviscid flow over pitching NACA0012 airfoil: first mode of surface pressure coefficient. a Real component. b Imaginary
component
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Fig. 8 Symmetric inviscid flow over pitching NACA0012 airfoil: second mode of surface pressure coefficient. a Real component. b Imaginary
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Fig. 9 Symmetric inviscid flow over pitching NACA0012 airfoil: third mode of surface pressure coefficient. a Real component. b Imaginary
component

each pair of independent instants should be 180◦. Appar-
ently, splitting a period into eight equal intervals (or other
even numbers of intervals) automatically satisfies all these
requirements. Hence, the solution for a symmetric problem

is symmetric. If a period is divided into seven equal inter-
vals (or other odd numbers of intervals), it is impossible to
group all the independent instants into pairs since the num-
ber of independent instants is odd. Thus, the requirements
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are not satisfied and the solution for a symmetric problem is
non-symmetric.

For the reason discussed above, we choose to use even
numbers of equal intervals in a period for the Fourier TSM
as long as the computation can converge. Gopinath also justi-
fied that the Fourier TSM using an even number of intervals
is usually stable for problems where the time derivative is
relatively small, such as the flow past pitching airfoils and
wings at low forced frequencies [18]. In any of the present
computations using the Fourier TSM with even numbers of
intervals, the stability problem is not encountered. A possible
reason is that the frequencies in these flow problems are not
high enough to trigger the stability problem. In addition to
using even numbers of intervals, we also make sure that the
number of intervals is a power of 2 since efficient FFT can
be directly used in the Fourier TSM.

5 Error analysis on solutions for transonic and
subsonic flows

For smooth flows, time resolution by the Fourier TSM should
be of exponential order of accuracy as compared to the 2nd-
order time accuracy of the BDF scheme used in Ref. [11].
However, this may not be the case for flows with shock
motion. To evaluate comprehensively the computational effi-
ciency of the Fourier TSM and compare it to that of the
BDF method, error analysis is conducted to the computed
solutions. The previous test case for validation has shown
that whether or not shock wave movement exists has a great
influence on the time accuracy of the Fourier TSM. For this
reason, two flow problems are solved to provide solutions for
error analysis. The first one is still the previous test case for
validation, in which the NACA0012 airfoil pitches around
its quarter chord point with M∞ = 0.755, α0 = 0.016◦,
αm = 2.51◦, and κ = 0.0814. In this flow problem, shock
waves move back and forth over airfoil surface. For the pur-
pose of convenient comparison, the second flow problem is
constructed from the first one. In the constructed flow prob-
lem, all the flow conditions remain the same except that the
free stream Mach number is lowered to M∞ = 0.6. Compu-
tational results show that the flow of this problem is subsonic
everywhere. Hence, this flow problem is shock-free. To con-
duct error analysis, five different time resolutions are used for
the Fourier TSM. Corresponding to these time resolutions, a
period is split into 4, 8, 16, 32, or 64 equal intervals. When
the BDF method is applied, 16, 32, or 64 equal intervals are
used in a period. The solution using the Fourier TSM with
64 intervals is selected as the accurate solution. To ensure
the reliability of the error analysis, computations using the
Fourier TSMand theBDFmethod all converge to the residual
level of 1 × 10−14.

McMullen and Jameson [19] chose to use lift and moment
coefficients as figures-of-merit when evaluating the compu-
tational efficiency of the Fourier TSM. As the first step of the
present error analysis, we follow the same idea to work on
the computed lift and moment coefficients as well. For any
computed solution, the squared error of the lift coefficient in
a period is defined as follows

Error2cl =
m∑

n=0

[
(Ren(cl) − Ren(cl,a))

2

+ (Imn(cl) − Imn(cl,a))
2
]

+
ma∑

n=m+1

[
(Ren(cl,a))

2 + (Imn(cl,a))
2
]
,

(26)

where Ren(cl) and Imn(cl) are the real and imaginary com-
ponents of the n-th Fourier mode of the lift coefficient for
the given solution. Ren(cl,a) and Imn(cl,a) are the real and
imaginary components of the n-th Fourier mode of the lift
coefficient for the accurate solution. m and ma are the num-
bers of Fourier modes that the given solution and the accurate
solution include, respectively. The first summation in the
Eq. (26) represents the aliasing error of the given solution,
whereas the second one is a measure of the truncation error
of the same solution. Similarly, for any computed solution,
the squared error of the moment coefficient in a period can
be defined as follows

Error2cm =
m∑

n=0

[
(Ren(cm) − Ren(cm,a))

2

+ (Imn(cm) − Imn(cm,a))
2
]

+
ma∑

n=m+1

[
(Ren(cm,a))

2 + (Imn(cm,a))
2
]
,

(27)

where Ren(cm) and Imn(cm) are the real and imaginary com-
ponents of the n-th Fourier mode of the moment coefficient
for the given solution. Ren(cm,a) and Imn(cm,a) are the real
and imaginary components of the n-th Fourier mode of the
moment coefficient for the accurate solution. According to
the definitions in Eqs. (26) and (27), the results of error
analysis for the lift and moment coefficients are shown in
Fig. 10.

Figure 10a shows that for the flow with shock wave, the
error in the lift coefficient using the BDF method decreases
as the time resolution increases, and the drop rate of the error
is less than 2. In the log-log coordinate system, if the tempo-
ral variation of the local pressure coefficient is smooth over
the entire airfoil surface, then the drop rate of its error and the
error of its integration quantities(such as lift coefficient) for
the 2nd-order BDF method should be exactly 2. If a shock
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Fig. 10 Error of the computed solutions. a For lift coefficient. b For moment coefficient

wave occurs in some region of the airfoil surface, the tempo-
ral variation of the pressure coefficient is not smooth in the
region. Thus, for the solutions of the 2nd-order BDFmethod,
the drop rate of the error in the pressure coefficient and that
of the lift coefficient all decrease below 2. Using the same
time resolution, the error of the lift coefficient for the Fourier
TSM is lower than that for the BDF method. This indicates
that to obtain the lift coefficient with the same accuracy level,
much fewer intervals are needed for the Fourier TSM. For
instance, the lift coefficient calculated by the Fourier TSM
with eight intervals is as accurate as the one obtained by the
BDF method with 64 intervals. So it can be concluded that if
the lift coefficient is taken as the figure-of-merit, the Fourier
TSM is much more efficient than the 2nd-order BDFmethod
even when shock wave occurs.

Figure 10a also shows that in the shock-free case, the drop
rate of the error in the lift coefficient is exactly 2 for the 2nd-
order BDF method. This is an expected result according to
theoretical analysis. Under the same time resolution, the error
in the lift coefficient for the Fourier TSM is much lower than
that for the BDF method. For instance, the lift coefficient
calculated by the Fourier TSM with only four intervals is as
accurate as the one obtained by the BDF method with 64
intervals. This means if the lift coefficient is taken as the
figure-of-merit, the Fourier TSM is extremely efficient for
the shock-free case.

Figure 10b shows that the conclusion of the error analysis
for the moment coefficient is similar to that for the lift coef-
ficient. However, if the moment coefficient is taken as the
figure-of-merit, the efficiency advantage of the Fourier TSM
over the BDF method is weakened especially for the flow
with shock wave. This is because the temporal variation of
the moment coefficient is much more complicated than that
of the lift coefficient if a shock wave occurs. For this reason,
a higher time resolution is required for the Fourier TSM to

resolve the details of the temporal variation of the moment
coefficient.

The above error analysis is made on the integral quantities
of the surface pressure coefficient. In practice, the computa-
tional result of the surface pressure itself is also of great
importance since it can reflect local flow details and key fea-
tures. To evaluate the computational efficiency of the Fourier
TSM more comprehensively, the error analysis should be
conducted on the computed surface pressure coefficient as
well. The following averaged squared error of the surface
pressure coefficient can be defined for a given solution:

Error2cp,averaged = 1

q

q∑
s=1

m∑
n=0

{
[Ren(cp(s)) − Ren(cp,a(s))]2

+ [Imn(cp(s)) − Imn(cp,a(s))]2
}

+ 1

q

q∑
s=1

ma∑
n=m+1

{
[Ren(cp,a(s))]2

+ [Imn(cp,a(s))]2
}
,

(28)

where Ren(cp(s)) and Imn(cp(s)) are the real and imaginary
components of the n-th Fourier mode of the pressure coef-
ficient for the given solution. Ren(cp,a(s)) and Imn(cp,a(s))
are the real and imaginary components of the n-th Fourier
mode of the pressure coefficient for the accurate solution. q
is the number of grid cells over the airfoil surface.

According to the definition in Eq. (28), the results of
error analysis for the surface pressure coefficient is shown
in Fig. 11. The average error of the surface pressure coeffi-
cient drops as time resolution increases in the similar trend
that can be observed for the lift coefficient or the moment
coefficient. However, for the flow with shock wave, the aver-

123



Fourier time spectral method for subsonic and transonic flows

Number of intervals

A
ve

ra
g

e 
er

ro
r 

in
 p

re
ss

u
re

 c
o

ef
fi

ci
en

t 
(c

p
)

20 40 60 80 100

10-5

10-4

10-3

10-2

10-1

Fourier TSM, with shock wave
2nd-order BDF, with shock wave
Fourier TSM, shock free
2nd-order BDF, shock free
Line with slope equal to -2

Fig. 11 Averaged error of the surface pressure coefficient

age error of the surface pressure coefficient for the Fourier
TSM becomes comparable to that for the BDF method if the
time resolution is relatively low (16 or fewer intervals are
used in a period). For the flow with shock waves, the spec-
trum of the surface pressure coefficient contains significant
components of higher modes due to the motion of the dis-
continuous shockwave. They only start to decay dramatically
after the 7-th Fourier mode (seven modes are included if 16
intervals are used in a period). In the shock-free area, the
spectrum of the surface pressure coefficient is much simpler
and all Fourier modes decay rapidly. When time resolution is
relatively low, the average error of the surface pressure coef-
ficient mainly reflects the local error in the region of shock
wave movement. In that region if 16 or fewer intervals are
used, dominant Fourier modes are not included completely
in the Fourier TSM. Hence, the aliasing error and the trunca-
tion error are high. Recall that the lift coefficient has a very
simple spectrum and all of its Fourier modes decay rapidly.
Hence, the temporal variation of lift coefficient can be pre-
dicted accurately by the Fourier TSM even when the time
resolution is pretty low.

The above error analysis demonstrates that for integral
quantities of the surface pressure coefficient (especially
the lift coefficient) in flows with shock waves, the Fourier
TSM is much more efficient than the BDF method. If the
temporal variation of the surface pressure coefficient itself
is simulated, the computational efficiency of the Fourier
TSM decreases, but is still not lower than that of the BDF
method. For the shock-free flow problems, the Fourier TSM
is extremely efficient for both the surface pressure coefficient
and its integral quantities.

Given the number of pseudo-time steps needed to reach
convergence at each time instance being about the same, the
total CPU time required by eachmethod depends on the num-
ber of time instances to be computed in a period. The Fourier

TSM, being of exponential order of accuracy, achieves much
higher time accuracy than the conventional 2nd-order BDF
method, even for flows with shocks as discussed above. As a
result, to achieve the same level of time accuracy, fewer time
instances (intervals) in a period are needed for the Fourier
TSM than for the conventional BDF time-marching method.
For example, Fig. 11 shows that the Fourier TSM with eight
time intervals achieves the same accuracy as the BDF with
64 time intervals for the shock-free case. In addition, to
reach a steady-state periodic solution, the conventional time-
marching solver has to go through an initial transient process
by marching the real time forward for several (usually five or
more) periods. With the Fourier TSM, however, the steady-
state periodic solution is obtained in one shot by solving the
coupled time-space equations without having to go through
an extra transient period. Combining these two factors, the
Fourier TSM is orders of magnitude faster than the con-
ventional time-marching method for periodic flow problems
where a high-order of accuracy in time is needed. In prac-
tice, however, the computational efficiency advantage of the
Fourier TSM greatly hinges on the efficiency in solving the
coupled system of Eq. (22) and also on the smoothness of the
solutions. For problems where the solution contains discon-
tinuities such as shock waves, the advantage of the Fourier
TSM time may be reduced.

6 Application to the periodic problems with
unknown frequency

In the preceding computations of the flows over the pitch-
ing NACA0012 airfoil, the frequency of the flow problems is
known since it is equal to the given pitching frequency. For
such computations, the Fourier TSM can be directly applied.
Recall that the frequency is an explicit factor in the time
spectral operator and it must be given for the Fourier TSM.
There also exist flow problems in which the frequency is not
known before experiments or computations. A representative
flow problem of this kind is the laminar vortex shedding flow
behind a circular cylinder. Though the flow is known to be
periodic, the frequency is not known a priori. Only a rough
estimation can be made by empirical formula. To obtain the
accurate frequency and the unsteady flow field using the
Fourier TSM or equivalent methods, a frequency searching
process must be involved. McMullen et al. [17] proposed a
gradient based variable time period (GBVTP)method for the
frequency domain method. Gopinath and Jameson [18] pro-
posed a similar gradient based method to the Fourier TSM.
In the gradient-based method, the frequency is updated using
the negative gradient of the squared unsteady residual with
respect to frequency as follows

ωl+1 = ωl − α
∂ R̃2

∂ω
, (29)
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whereα is a coefficient that controls the update and it has to be
carefully chosen to guarantee convergence. Given the initial
guess of the frequency that is sufficiently close to the correct
value, the method can find the exact frequency precisely.

To broaden the search range and make the initial guess
of frequency less constrained, we propose a new method
that is based on Fourier analysis of the lift coefficient (or
another local or global flow variable) to estimate the fre-
quency before the gradient-based method is used to obtain
the final converged value. For problems like vortex shedding
flow over a circular cylinder, the first Fourier mode of the
lift coefficient usually achieves maximum amplitude. Apply-
ing Fourier analysis to the lift coefficient, the frequency of
the Fourier mode with maximum amplitude can be assigned
to be the new frequency. When the first mode of the lift
coefficient reaches maximum amplitude, the gradient-based
method takes over the duty of searching for the correct fre-
quency.

In the present computation, a circular cylinder is fixed in
the laminar flow at M∞ = 0.2 and Re = 180. A 257 × 129
O-type mesh is used. The normal distance from the first grid
point to the surface is 1×10−3, while the cylinder diameter is
unity. The far-field boundaryof themesh extends to about 200
diameters away from the cylinder. Based on the experience
from the preceding computations, eight real-time intervals
are employed when implementing the Fourier TSM. Since
the present flow problem is shock-free, eight intervals should
be sufficient to apply the Fourier TSM. Convergence criteria
for the unsteady flowfield is set to be 1×10−6. The frequency
search process doesn’t stop until the flowfield converges. The
present computational result is compared with experimental
data [24–27].

The convergence history is shown in Fig. 12a. Using the
Fourier TSM and the proposed frequency search approach,
the residual of the computation can finally drop to the conver-

Table 1 Vortex shedding flow behind circular cylinder

St Time-averaged cd

Williamson [24,25] 0.1919

Roshko [26] 0.185

Henderson [27] 1.336

Current computation 0.1919 1.337

gence criteria. The frequency updating historywith respect to
multigrid cycles is shown in Fig. 12b. The non-dimensional
angular frequency is defined as

ω′ = ωd√
p∞
ρ∞

, (30)

where d is diameter of cylinder, p∞ the free-stream pres-
sure, and ρ∞ the free-stream density. The initial non-
dimensional angular frequency is about 0.0237 (the cor-
responding reduced frequency is 0.05), while the final
convergednon-dimensional angular frequency is 0.2852.The
initial guess of the frequency is far away from the correct
value.

Finally, the Strouhal number is found and the converged
time-averaged drag coefficient of the present computation
are compared with experimental data in Table 1. For the
Strouhal number, the current computational result is very
close to Williamson’s [24,25] data. For the time-averaged
drag coefficient, the current computational result matches
Henderson’s [27] data very well.

In the present computation, Fourier analysis of the lift
coefficient is carried out after every 100 multigrid cycles.
The histories of lift coefficient at different time levels with
respect to multigrid cycles are shown in Figs. 13, 14, and 15.
Figure 13a shows that during the first 100 multigrid cycles,
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the lift coefficient at different time levels generally oscillate
with the same phase. However, a phase difference starts to
appear near the 100-th multigrid cycle. Figure 13b shows
that at the end of the 100-th multigrid cycle, the third Fourier
mode of the lift coefficient achieves maximum amplitude.
Since the third Fourier mode is the one with the highest fre-
quency that the Fourier TSMwith eight intervals can include,
the overall error of this mode is usually the highest among
the included Fourier modes. For this reason, the frequency of
the second Fourier mode is assigned as the new frequency.
Figure 14a shows that in the next 100 multigrid cycles, the
lift coefficient on different time levels continues to oscillate
with phase difference. However, the amplitude of the oscil-
lation is growing gradually. Figure 14b shows that at the
end of the 200-th multigrid cycle, the first Fourier mode of
the lift coefficient already achieves maximum amplitude. So
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Fig. 16 Flow over circular cylinder: drag coefficients in a period

from the 201-th multigrid cycle, the gradient based method
starts to search the correct frequency. In the third 100 multi-
grid cycles, Fig. 15a shows that the lift coefficient on each
time level stops oscillating gradually and approaches its con-
verged value. After that, the lift coefficient on each time level
completely stops oscillating and finally converged. This is
illustrated in Fig. 15b.

The temporal variations of the total drag coefficient and
its components due to pressure and skin friction in a period
are shown in Fig. 16. The original discrete computational
results, as well as the rebuilt results are plotted. The rebuilt
results are obtained by summing the resolved Fourier modes
on 129 equally spaced instants over the obtained period. It
can be observed that the drag due to pressure is the dominant
component of the total drag. Themean value and the variation
amplitude of the drag due to pressure are all much larger than
those of the drag due to skin friction. The temporal variations
of the lift and moment coefficients in a period are shown in
Fig. 17.

Figure 18 shows the vortex shedding process during
one shedding period. Mach number contours in flood type
and streamlines are plotted using the present computational
results. Every vortex in this flow is initially generated on the
surface area near the trailing edge, then it grows larger pro-
gressively. When the vortex is about the size of the cylinder,
it detaches from the surface. After that, the detached vortex
sheds away from the cylinder and dissipates in thewake. This
process occurs alternately on upper and lower surface area
near the trailing edge.

7 Conclusion

The Fourier TSM for the unsteady Navier–Stokes equations
is presented and tested for a transonic flow over a pitching
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NACA0012 airfoil and compared with the results of using
a conventional 2nd-order BDF method. Convergence study
of the time discretization errors with respect to the num-
ber of time steps for the two methods show that the Fourier
TSM offers significantly better accuracy than the second-
order BDF method for predicting both the local pressure
coefficient and integrated force coefficients for subsonic peri-
odic flows. For transonic periodic flows where the motion of
the discontinuous shock wave contributes significant higher-
order harmonic components to the local pressure, a sufficient
number of modes must be included before the Fourier TSM
provides an advantage over the BDF method. For example,
more than 16 time intervals are needed in a period for the
Fourier TSM to resolve the surface pressure coefficient in
regions of the shock-wave movement for the oscillating air-
foil problem. The Fourier TSM, however, still offers better
accuracy than the BDF method for integrated force coeffi-
cients even for flows with shock waves. Computations also
reveal a problem of non-symmetric solutions occurring for
symmetric periodic flows due to the use of odd numbers of
intervals. This non-symmetry is accentuated for the Fourier
TSM for transonic flows when an insufficient number of har-
monic modes are included.

For problems where the frequency is not known a pri-
ori, a search algorithm based on a combination of Fourier
analysis of the computed time-history of a flow quantity and
a gradient method based on minimizing the unsteady resid-
ual of the Navier–Stokes equations can be used to quickly
and accurately determine the frequency of the flow. This
frequency-search method along with the Fourier TSM are
successfully demonstrated for the periodic vortex shedding
problem of the low Reynolds number flow over a circu-
lar cylinder. Fourier analysis of the lift coefficient is first
performed to estimate the unknown frequency before the gra-
dient method is used to pin down the final value. The method
works for initial guesses of the frequency that are far away
from the correct value. The Fourier TSM gives excellent pre-
diction of the drag value and the Strouhal number compared
to experimental data with as few as only eight time intervals
for this vortex shedding flow problem.
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