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We investigate the distributions of length and velocity scales in a Mach 0.9 isother-
mal round jet for the purpose of developing a linear surface-based model for the noise
source that can be informed by the time-averaged flow field. Large eddy simulation of
the flow enables the computation of two-point space-time correlations throughout the
jet and its near acoustic field. The resulting time, length, and convective-velocity scales
are examined on the surface of peak Reynolds stress (SPS), representing the location
of the most energetic eddies, and on a “radiator surface" at the boundary between
the rotational and irrotational fields. The radiator surface is defined such that the
convective velocity distribution on it matches that on the surface of peak Reynolds
stress. The location of the radiator surface, and distributions of flow scales on it, are
critical elements of the noise source model and are examined in detail. The nature of
the space-time correlations, and resulting scales, differ significantly for axial velocity
fluctuations and pressure fluctuations. Velocity-based correlations appear to capture
localized turbulent events, while pressure-based correlations appear dominated by the
interaction of large eddies with the surrounding potential flow. Consequently the axial
and radial distributions of the corresponding length scales exhibit different trends.
Correlation scales on the radiator surface are larger than on the SPS thus indicat-
ing that fine-scale vortical motions do not make a significant imprint on the radiator
surface. Scales associated with the Reynolds-averaged flow field, relevant to low-cost
modeling, are emulated from LES data and compared to the LES-based scales. Simple
relationships are established that may aid the development of rapid predictive models.

Nomenclature
� = proportionality factor
� 9 = nozzle exit diameter
6 = principal component of the Reynolds stress
: = turbulence kinetic energy
! = fixed-frame length scale
!̂ = moving-frame length scale
" 9 = jet exit Mach number
? = pressure
' = space-time correlation
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A8 = radial location of inner edge of mixing layer
(C� = Strouhal number based on nozzle diameter
) = temperature
C = time
* 9 = jet exit velocity
*2 = convective velocity
DCL = centerline time-averaged velocity
D, E, F = velocity components in Cartesian coordinate system
G, A, q = cylindrical coordinates, with G on jet axis
G, H, I = Cartesian coordinates, with G on jet axis
X\ = momentum thickness of the mixing layer
b, [, U = displacements in cylindrical coordinates
n = turbulence dissipation
Φ = azimuthal scale
8 = vorticity vector

Superscripts

′ = temporal fluctuation

Acronyms

LES = Large Eddy Simulation
SPS = Surface of Peak Stress
RANS = Reynolds-Averaged Navier Stokes

I. Introduction
The research effort presented here is motivated by the need of the aerospace community for low-order

predictive models of the jet noise emission. For these models to have satisfactory turnaround times and
become useful design tools, they need to rely on low-cost solutions of the flow field such as Reynolds-Averaged
Navier Stokes (RANS) simulations. The focus is on surface-based models which constitute an alternative to
the acoustic analogy models started with Lighthill [1]. In surface-based models, the noise source is prescribed
on a surface surrounding the jet flow, commonly located in the linear pressure field [2, 3]. This approach has
the advantage of allowing predictions of not only propagation but also scattering from nearby objects (i.e.
airframe surfaces) using well known linear propagation techniques such as the boundary element method
[4–6]. In addition, surface-based models could simplify the treatment of complex multi-stream asymmetric
jets that have shown promising noise reductions [7, 8]. To be able to inform the surface-based noise source
model from the RANS flow field one needs to establish physical connections between the dominant turbulent
events in the vortical region of the jet and the linear pressure statistics near the edge of the jet where the
surface-based model is defined. The basic elements of this connection, as proposed by Ref. [9], are depicted
in Fig. 1. It is envisioned that the action of the turbulent eddies that dominate sound production is represented
by the flow statistics on the surface of peak Reynolds stress, abbreviated here as SPS. It is on this surface
where the information on the vortical field would be extracted from the RANS solution. The noise source is
prescribed as a distribution of random partial fields on a “radiator surface” at the edge of the jet, defined
as the boundary between the rotational flow field and the outer linear pressure field. Each partial field is
constituted by an amplitude modulated traveling wave with finite axial and azimuthal length scales. Critical
elements of the partial fields include their location, convective velocity*2 , and correlation scales in the axial
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Fig. 1 Basic elements of surface-based modeling.

and azimuthal directions. Previous works [10, 11] have studied the distribution of convective velocity *2,
as calculated from space-time correlations, and have found two regions: an inner region, encompassing the
jet flow, where*2 generally follows the trend of mean axial velocity and thus decays radially; and an outer
region, near the edge of the jet and beyond, where*2 rapidly increases to supersonic values indicative of the
flow field. The same works proposed that a suitable placement of the radiator surface is at the region where
*2, based on pressure fluctuations, matches the convective velocity of the turbulence structures on the SPS
based on velocity fluctuations. It was also found that*2 on the SPS can be accurately modeled as the mean
axial velocity on the SPS, therefore allowing its determination from the RANS flow field.

Turbulence scales in jet shear layers have received considerable attention in the literature. Among others,
one can outline the measurements of Harper-Bourne [12] and Morris and Zaman [13], which are frequently
used to inform jet noise source models. More recently, Proença et al. [14] performed a comprehensive
hot-wire investigation in the shear layer of various unheated single-stream jets. However, past works have
focused primarily on the jet lip line and centerline and provide little information on turbulent scales near the
edge of the jet. This motivates the present work where we seek physical connections between flow scales in
the vortical field and at the edge of the jet.

In the present work, we analyze a high-definition large eddy simulation (LES) of a single-stream Mach 0.9.
Using two-point, space-time correlations we calculate characteristic length and velocity scales throughout
the jet flow and in the near acoustic field. The distribution of these scales on the SPS and on the radiator
surface are of particular interest. We thus aim to investigate physical connections between the core of the
vortical field and the resulting pressure signature at the edge of the jet where a linear source model would be
prescribed. In addition we use the LES results to emulate the RANS flow field and evaluate the effectiveness
of using RANS to model the scales relevant to noise generation.

II. Numerical Flow Field

A. Jet Flow
We consider an isothermal, single-stream round jet at velocity * 9 = 309 m/s, Mach number " 9 = 0.9

and diameter-based based Reynolds number '4� = 105. The jet originates from a pipe of constant diameter
� 9 and discharges into air with temperature )0 = 293K and pressure ?0 = 105Pa. The pipe exit is at G = 0,
and the pipe wall thickness is 0.053� 9 . This jet has been studied in previous works [15–18].

The pipe flow originates at G = −� 9 , where a Blasius laminar boundary-layer profile of thickness
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X�! = 0.075� 9 is imposed for the axial velocity. In addition, radial and azimuthal velocities are set to zero,
pressure is equal to its ambient value, and the temperature is resolved by a Crocco-Busemann relation. The jet
is initially disturbed by adding random low-level vortical structures uncorrelated in the azimuthal direction at
G = −0.475� 9 inside the pipe [15]. The forcing strength is empirically set to match the nozzle-exit conditions
measured in a tripped jet by Zaman [19]. The resulting mean axial velocity profile is very similar to the
laminar profile imposed at the nozzle inlet, while the rms velocity profile shows peak axial turbulence intensity
D′4/* 9 = 0.0914.

B. Numerical Methods
The numerical framework for the LES used in this work is identical to that used in previous jet simulations

[15–18, 20–23]. The computational code solves the three-dimensional Navier-Stokes equations in cylindrical
coordinates (G, A, q) using low-dissipation and low-dispersion explicit schemes. The singularity that is present
at the axis is solved by the method of Mohseni and Colonius [24]. The region near the axis also presents
a restriction in time-step that is alleviated by calculating the azimuthal derivatives at coarser resolutions
than those permitted by the grid [25], yielding a resolution of 2c/16. Spatial discretization is performed by
fourth-order eleven-point centered finite differences, and time integration is carried out using a second-order
six-stage Runge-Kutta algorithm [26]. The flow variables are filtered every time step by a sixth-order
eleven-point centered explicit filter [27].

The explicit filtering used in the present simulation has the dual purpose of removing grid-to-grid
oscillations and of performing as a subgrid-scale high-order dissipation model for the regions where the mesh
grid is not fine enough to capture the smallest scales of turbulence.

Near the pipe walls and grid boundaries, filters and non-centered finite differences also take place. At the
boundaries, a sponge zone combining grid stretching and Laplacian filtering [28] is used to avoid acoustic
reflections, in addition to the radiation conditions of Tam and Dong [29].

The effectiveness of this numerical framework has been assessed in previous studies in diverse cases such
as subsonic jets, Taylor-Green vortices and turbulent channel flows [15, 30–33], where it has been compared
against direct numerical simulations and the properties of the filtering dissipation have been examined.

C. Simulation Parameters
The simulation presented is a highly-resolved LES. Its characteristics are reported in detail in a recent

paper by Bogey [17], where it is carried out a grid-sensitivity study of the jet flow and acoustic fields. The
mesh grid contains =G × =q × =A = 2085 × 1024 × 512 points, and its physical extents are 20� 9 and 7.5� 9

in the axial and radial dimensions respectively. The minimum mesh spacings are equal to ΔA = 0.0018� 9

at A = � 9/2 and ΔG = 0.0036� 9 at G = 0. The maximal mesh spacing in the jet near field is equal to
ΔA = 0.0375, leading to a Strouhal number of (C� = 5 � 9/* 9 = 5.9 for an acoustic wave discretized by five
points per wavelength, where 5 is the frequency.

The simulations have been performed with an OpenMP-based in-house solver, using a time step
ΔC = 0.7 × ΔA<8=/20 to ensure numerical stability. The simulation time after the transient period is equal
to 1250� 9/* 9 . During the stationary time, density, velocity components and pressure are recorded at a
sampling frequency of (C� = 6.4 in eight equidistant azimuthal angles. Their Fourier coefficients in the
azimuthal directions, estimated over the full section (G, A), are also saved for the first nine azimuthal modes.
The statistics are averaged in the azimuthal direction, when possible. The size of the database amounts to
approximately 6.5 TB.

4



III. Definition of Flow Scales

A. LES-based scales

1. Space-time correlations
In the present work, the measures of length scales are surveyed using two-point space-time correlations

given a reference position in the domain. The normalized space-time correlation of variable 5 in the meridian
section (G, A) is defined as

' 5 5 (G, A; b, [, g) =
5 (G, A, C) 5 (G + b, A + [, C + g)

5 (G, A)1/2 5 (G + b, A + [)1/2
(1)

where b is the displacement in the axial direction, [ is the displacement in the radial direction, g is the time
shift, and overline denotes time averaging. The variable 5 can correspond to the fluctuating axial velocity or
pressure, yielding 'DD or '?? respectively.

The values of variables b and [ of Eq. 1 are linked so that the displacement angle \ = arctan ([/b) is
consistent with the flow spreading. At points below the lip line A = 0.5� 9 , the displacement is axial. Above
the lip line, the displacement aligns with the central point (G, A) and the nozzle lip, up to a maximum of 9
degrees. The choice of limiting the displacement angle to 9 degrees comes after analyzing the geometry of
the radiator surface explained in section IV, which expands almost uniformly at that value. The distribution
of displacement angle is shown schematically in Fig. 2.

Fig. 2 Drawing of displacement angle on two-point correlations. Black circles: examples of central
points (G, A). Blue crosses: examples of displacements (G + b, A + [). Label A: point below lip line.
Label B: point above lip line, below 9◦ to lip edge. Label C: point above 9◦ to lip edge.

2. Fixed-frame length scales
The fixed-frame length scale is the axial distance ! over which events remain correlated for a fixed time

frame. Following Harper-Bourne [12], Morris and Zaman [13], and Dahl [34], we define the length scale as
the displacement b at which the correlation ' 5 5 decays to 1/e. We also note that ' 5 5 is not an even function
with b [14], so displacements b are taken in the negative and positive directions relative to the reference
location. This method yields two displacements ! 51 < 0 and ! 52 > 0 that satisfy

' 5 5 (b = ! 58 , g = 0) = 1/e, (8 = 1, 2) (2)
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Fig. 3 Space-time correlation '?? at G/� 9 = 2.5 and A/� 9 = 0.5. Dotted lines: fits by seventh-order
polynomials. Dashed lines: relevant marks for the calculation of !̂?.

where for brevity we omit the coordinates of the reference location from the argument of ' 5 5 . We define the
fixed-frame length scale as the average of the magnitude of the two displacements:

! 5 =
1

2
( |! 51 | + ! 52) (3)

In practice the application of Eq. 2 requires interpolation between the discrete data of the simulation. The
definition of length scale used here differs from the classical method of calculating the length scale as the
integral of the correlation curve [35]. The two approaches yield similar results as the integral approach often
terminates at the first zero crossing. We carried out comparisons of the two approaches and found that, while
the quantitative values differ slightly, the qualitative trends are consistent.

3. Moving-Frame Length Scales
We consider an additional axial length scale, the moving-frame length scale !̂. This scale is a measure

of the axial distance over which turbulence remains correlated as it convects downstream. It can also be
interpreted as the “length of life” of a turbulent eddy, the distance traveled until its characteristics are lost
through pairing or other mechanisms. Kerhervé et al. [35] note that this is not a “real” length scale, but rather
a product of the convective velocity and a time scale. Nevertheless, it is an intrinsic characteristic of the
stochastic events of the jet and can be useful for source modeling. Similarly to the fixed-frame length scales,
we compute two values !̂ 51 < 0 and !̂ 52 > 0 for negative and positive displacements, respectively, around a
reference location that satisfy

' 5 5 (b = ! 58 , g = g'<0G
) = 1/e, (8 = 1, 2) (4)

where g'<0G
is the time delay that maximizes the correlation ' 5 5 for a reference location and displacement

b. The moving-frame length scale is then defined as

!̂ 5 =
1

2
( | !̂ 51 | + !̂ 52) (5)
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In practice !̂ 5 is calculated by considering the envelope of space-time correlations at various axial separations
b8. Figure 3 shows an example of space-time correlations based on pressure fluctuation ?′ for a reference
location in the vortical field. The values of b corresponding to !̂ 51 and !̂ 52 are linearly interpolated from the
correlation maxima. In order to improve the precision of the method, the exact locations of the those maxima
are calculated by fitting seventh-order polynomials to the correlation curves.

4. Convective Velocity
The space-time correlations are also used to calculate the convective velocity of fluctuations everywhere in

the domain. The convective velocity for a given axial separation b8 , is*28 = b8/g'<0G,8
. The final convective

velocity at a reference location is calculated as the average of all*28 extracted from correlations whose peak
correlation exceeds 0.4. For the calculation of convective velocity, the radial displacement is [ = 0. Therefore,
the convective velocity presented here relates to the axial motion of events. Similarly to the flow scales, the
convective velocity can be based on velocity or pressure fluctuations, yielding*2D and*2? , respectively.

5. Azimuthal Scales
The azimuthal scale is angular and is defined at fixed axial, radial, and time separations. The related

two-point correlation is

' 5 5 (G, A, q;U) = 5 (G, A, q, C) 5 (G, A, q + U, C)

5 (G, A, q)1/2 5 (G, A, q + U)1/2
(6)

where U is the the azimuthal separation. For a given reference point (G, A, q), the azimuthal scale is defined by

' 5 5 (U = Φ 5 ) = 1/e (7)

The range of the azimuthal scale is Φ 5 ∈ [0, c], where Φ 5 = c indicates that ' 5 5 is above the threshold of
1/e for the entire azimuthal range. In this work, we reconstructed the azimuthal variation of the flow field
from the first nine Fourier modes. This reconstruction captures most of the relevant flow features, but fails
when describing abrupt azimuthal variations that require a wider ranger of azimuthal modes. Future efforts
will consider using the complete flow field.

B. RANS-Based Scales
RANS-based scales are relevant to low-cost modeling of the noise source. Here we do not use results

directly derived from a RANS simulation of the same jet, but instead we use the statistics of the LES to
“emulate” the results that a RANS simulation would yield. While we took this approach because of a lack a
readily available, equivalent RANS simulation, we can recognize an advantage of this “emulation” method:
simulations by RANS and LES will show disparities in the flow field due to their difference in accuracy.
Here, we can directly test the relation between turbulent structures and their impact on the time-averaged flow,
without differences in the predicted flow fields. RANS-based flow scales rely on dimensional analysis of
the time-averaged variables related to turbulence production and dissipation. Using temporarily the index
notation (G1, G2, G3) = (G, H, I) and (D1, D2, D3) = (D, E, F), the turbulent kinetic energy is

: =
1

2

(
D′2
1
+ D′2

2
+ D′2

3

)
(8)

and the dissipation is
n = 2ā(′

8 9
(′
8 9

(9)

7



where a is the kinematic viscosity and

(′8 9 =
1

2

(
mD′

8

mG 9
+
mD′

9

mG8

)
(10)

is the fluctuating rate of strain. A dimensional construct of : , n and a yields the RANS-based length scale

! = �!
:3/2

n
(11)

where �! is an empirical coefficient. A RANS-based azimuthal scale can be defined similarly by dividing by
the radial coordinate A ,

Φ = �Φ
:3/2

n A
(12)

LES allows for the direct computation of the turbulent kinetic energy. On the other hand, it does not evaluate
directly of the dissipation because of the existence of the dissipation of the subgrid scale model, namely the
filtering relaxation term in the present LES[31]. The “real” dissipation n experienced by the flow, which would
be the value given by a RANS simulation, must be computed through the budget of turbulence kinetic energy.
Following Panchapakesan and Lumley [36], the dissipation on a turbulent axisymmetric jet is computed as

n = −
[
D̄
m:

mG
+ Ē m:

mA

]
−

[
E′2

mĒ

mA
+ F′2 Ē

A
+ D′2 mD̄

mG
+ D′E′

(
mE

mG
+ mD
mA

)]
− 1
2

[
m^E′

mA
+ ^E

′

A
+ m^D

′

mG

]
(13)

where ^ = D′2 + E′2 + F′2. We can identify the first term (in brackets) as advection, the second as production,
and the third as turbulent diffusion of the turbulence kinetic energy.

IV. Relevant Surfaces

A. Surface of Peak Reynolds Stress
In the acoustic analogy model of Ref. [37] it was surmised that the most representative region of the effects

of noise-generating turbulence eddies is the outer-most peak of the magnitude of the principal component of
the Reynolds stress

6 = | < D′@′ > | (14)

where D′ is the axial velocity fluctuation and @′ is the traverse velocity fluctuation in the direction of the mean
velocity gradient. Of course, for the case of a single-stream round jet there is only one peak of Reynolds
stress 6 and the mean velocity gradient is in the radial direction. The surface is therefore named SPS (Surface
of Peak Stress). This surface is the region where the stochastic, highly energetic turbulence structures are
expected to have a strong effect on the mean statistics on the flow. For this reason, the SPS is an important
region for noise source modeling from low-cost simulations such as RANS [11].

B. Radiator Surface
The radiator surface is defined as a surface close to the jet axis on and outside of which the propagation of

pressure perturbation is governed by the homogeneous linear wave equation. It is on this surface that the noise
sources could be modeled in the form of linear partial fields [38]. This model would be informed by turbulence
statistics of the vortical field computed by RANS. It is the purpose of this work to further understand the
connection between the vortical field and radiator surface by studying their relation in turbulence scales.
The specific definition used in the present work is the surface near the edge of the jet where the ?′-based
convective velocity matches the D′-based convective velocity on the SPS at the same axial location. This
definition has been used by previous works on multi-stream jets [10, 11].
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V. Overview of the Flow Field
In the following we present contour plots that highlight the flow characteristics and positions of the

relevant surfaces. Figure 4 plots the normalized mean axial velocity, D/* 9 , averaged in the azimuthal direction.
The SPS is plotted as the red line, located within the shear layer, near the peak of the radial gradient of mean
velocity. The radiator surface is positioned at the edge of the jet, in a region of very low velocity, and grows
in an approximately linear fashion.

Fig. 4 Isocontours of normalized mean axial velocity D/* 9 . Red line: SPS. White line: radiator
surface.
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Fig. 5 Plots of axial velocity along a) SPS and jet centerline, normalized by jet velocity; and b) SPS,
normalized by centerline velocity.

Figure 5a plots axial distributions axial mean velocity on the jet centerline and on the SPS and the jet
centerline. The end of the potential core, defined here as the point where the centerline mean axial velocity
DCL decays to DCL = 0.95* 9 , is located near G = 7.4� 9 . The velocity on the SPS experiences a localized dip
in the thin shear layer near the nozzle lip (likely a numerical artifact) and then maintains a fairly constant
value at D = 0.6* 9 up to G = 10� 9 . Beyond this station it decays similarly to the decay of the mean centerline
velocity. The value*2 ≈ 0.6* 9 is fairly well established in the shear-layer region of cold jets [39]. Previous
works have shown that the mean axial velocity on the SPS can be used to model the convective velocity on
that surface with reasonable accuracy [10, 11, 37]. Given the similarity between the curves shown in Fig. 5a,
it is interesting to see the resulting trend if we choose to normalize the velocity on the SPS by the centerline
velocity at each axial location. The result is plotted in Fig. 5b. As expected, the curve is nearly constant at
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D = 0.6DCL for the extent of the potential core, after which the curve raises to approximately D = 0.66 DCL
and remains roughly constant.

The momentum thickness of the flow is relevant to scaling relations that follow. To maintain the same
definition within and downstream of the potential core, a generalization of the shear-layer momentum thickness
is used:

X\ =

∫ ∞

0

d(A)D(A)
dCLDCL

(
1 − D(A)

DCL

)
3A (15)

where the centerline mean conditions are used for normalization. The growth X\ (G), plotted in Fig. 6 is well
captured by the linear fit X\/� 9 = 0.0226 G/� 9 + 0.0077 throughout the region of interest. This result is in
line with past work on this jet [18].

The radial location of the inner edge of the shear layer A8 (G) is also relevant in scaling relations that will
be developed. Within the extent of the potenial core, the inner edge is defined as the interior locus where the
mean vorticity equals 0.05* 9/� 9 , that is,

|8(G, A = A8) | = 0.05
* 9

� 9

, A < � 9/2 (16)

Past the potential core, where the annular shear layer has collapsed on itself, we set A8 = 0. The axial evolution
of A8 is plotted in Fig. 6.
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0
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0.2

0.3

0.4

0.5

r
i

Fig. 6 Axial evolution of momentum thickness X\/� 9 (solid black line) and inner bound of shear
layer A8/� 9 (dashed blue line).

Figure 7 plots isocontours of the normalized Reynolds stress magnitude 6/*2
9
. The distribution of 6/*2

9

creates two distinct lobes that reach a minimum separation around G/� 9 = 9. Per its definition, the SPS is
located along the peak of the Reynolds stress, resulting in a surface of approximately constant radius until
G/� 9 = 11, where it starts diverging at a nearly constant rate of 4◦ with respect to the jet axis. To quantify
Fig. 7, we plot 6/*2

9
along the SPS in Fig. 8. The curve reaches a maximum value of 6/*2

9
= 0.00894 near

G/� 9 = 5. For 2.15 < G/� 9 < 7.5 the Reynolds stress is nearly constant and close to the peak value, and then
decays with downstream distance.

The statistics presented in Figures 4-8 were relevant to the SPS but not directly connected to the radiator
surface. Next we present distributions of quantities that relate to the definition and physics associated with the
radiator surface. Figure 9 plots the G−A distribution of the convective velocity*2? calculated from space-time
correlations of the pressure fluctuation. Two distinct regions are noted: an inner region, encompassing the jet
flow, where *2? generally follows the trend of the mean axial velocity and is a fraction of the mean axial
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Fig. 7 Isocontours of normalized Reynolds stress magnitude 6/*2
9
. Red line: SPS. White line:

radiator surface.
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Fig. 8 Normalized Reynolds stress 6/*2
9
.

velocity (and is thus subsonic for this jet); and an outer region, near the edge of the jet and beyond, where*2?
rapidly increases to supersonic values indicative of the acoustic field (the speed of sound here equals 1.11 * 9).
Specifically, at a given axial location within the first 15 jet diameters, *2? starts from a peak value at the
centerline and reduces radially as it follows the decline of the mean axial velocity; at some point near the
edge of the jet, this trend reverses and*2? starts increasing rapidly with radial distance. The radiator surface,
defined as the surface where*2? matches*2D on the SPS, is located slightly outward of the position of this
reversal, thus demarcates the transition from hydrodynamic to acoustic field. For G/� 9 > 15, where the jet
flow is nearly fully developed, the radiator surface appears to fall slightly inside the hydrodynamic field. It
should be noted that the region of supersonic convective velocity*2? > 1.11 * 9 visible in the upper left of Fig.
9 does not indicate that pressure fluctuations travel at supersonic speeds, but rather that they propagate at
large angles with respect to the horizontal displacements b used for the computation of*2? . The convective
velocity based on axial separation thus measures the trace of acoustic propagation in the axial direction.

Figure 10a presents the distributions of convective velocity based on axial velocity *2D , and pressure
fluctuation *2? along the SPS. The two curves are almost identical, indicating that the turbulence scales
imprint consistent velocity scales on pressure and velocity fluctuations. As mentioned above, previous works
have surmised that the convective velocity can be modeled by the mean axial velocity along the SPS [37]. We
test this hypothesis by comparing the curves of*2 to that of D along the SPS, also shown in Fig. 10a. The
curves are very similar qualitatively and only exhibit a small difference in values, with*2D being about 8%
higher than D for G/� 9 < 10.
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Fig. 9 Isocontours of normalized convective velocity *2?/* 9 . Red line: SPS. White line: radiator
surface.
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Fig. 10 Plots of convective velocity and time-averaged axial velocity a) along SPS; and b) radial trends
at G/� 9 = 5.

The information presented in the contour plots of *2? (Fig. 9) can be further quantified by presenting
the radial distribution of *2? at an axial station within the potential core, G/� 9 = 5. It is plotted in Fig.
10b, together with the variation of mean axial velocity velocity D at the same station. The potential core is
manifested by the flat regions of the profiles near A = 0. While D decays monotonically for A > A8,*2? first
follows the trend of D, reaches a minimum value near D/* 9 = 0.1 (i.e., well within the vortical field), then
reverses trend and increases rapidly as the hydrodynamic field transitions to acoustic. This reversal has also
been seen in earlier LES of a single-stream jet [40]. It is very relevant to the understanding and modeling of
the noise source.

Figure 11 plots isocontours of the magnitude of normalized mean vorticity |8|� 9/* 9 . It is observed that
the radiator surface is located at the edge of the mean vorticity field, consistent with its desired property to
mark the transition from hydrodynamic to acoustic field. Figure 11 suggests that a criterion based on the
mean vorticity may be used to located the radiator surface relying solely on the RANS solution. Initial efforts
in this regard have shown promise [11] but further refinements are needed.
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Fig. 11 Isocontours of normalized module of mean vorticity |8|� 9/* 9 . Red line: SPS. Blue line:
radiator surface.

VI. Distribution of Flow Scales

A. Fixed-Frame Length Scales
We present the distributions of fixed-frame length scales as defined in Section III. Isocontours of

normalized length scale based on axial velocity fluctuation !D/� 9 are plotted in Fig. 12. The value ranges
from near-zero at the nozzle exit to a peak of 1.08� 9 inside the vortical field. In accordance to the expectations
for its axial trend, the scales increase with the downstream distance as the jet turbulence structures are larger.
In addition, the radial dependence shows some interesting trends. At a given axial location past the end of the
potential core, !D has a radial trend whereby it increases outside the the centerline, reaches a local maximum
within the jet, then decreases to a local minimum at the edge of the jet. Outside the jet, !D increases to very
high values and saturates the contour. Upstream of the end of the potential core, !D exhibits a similar trend
but starting at the inner edge of the shear layer instead of the jet centerline. We note that the local radial
minimum of !D follows closely the radiator surface. This suggests a loss of coherence of velocity-based
events near the edge of the jet. Near the SPS, !D experiences the strongest radial variation within the jet flow.

Fig. 12 Isocontours of normalized length scale !D/� 9 based on axial velocity fluctuation. Red line:
SPS. White line: radiator surface.

The distribution of normalized length scale based on pressure fluctuation, !?/� 9 , is shown in Fig. 13.
There are notable differences between velocity and pressure-based results. In this case, there is no local
maximum inside the jet in the radial direction. Instead, the scales increase radially at a much higher gradient
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than in the axial direction, reaching a maximum around one nozzle diameter outwards from the radiator
surface. Near the radiator surface !? experiences its maximum radial gradient.

Fig. 13 Isocontours of normalized length scale !?/� 9 based on pressure fluctuation. Red line: SPS.
White line: radiator surface.

We interpret the radial trends of Figs. 12 and 13 as follows. The inner vortical region of the jet, marked by
the SPS, contains the main events of mixing and momentum transport of the mixing layer (see Eq. 14). That
region captures the largest scales of turbulence and by energy cascading it is also the location of small scales.
That combination of large and small scales drives the value of the length scale ! below the actual length of the
large scales [13]. As one leaves the SPS towards higher radial locations with lower vorticity, scales change to
reflect the footprint of the turbulence in the inner region. There, the effects of small scale turbulence are lost
faster than those of large scales, and less local influence of small eddies results in the increase of scales versus
radius seen in Figs. 12 and 13. It appears that the pressure-based scales on Fig. 13 increase radially due to
this effect until peaking beyond the radiator surface, well into the linear field. That region of radial maxima is
due to the footprint of large scales vortical structures inside the jet [41, 42] that are not isolated by two-point
correlations performed inside the vortical field. Velocity-based scales have a different behavior, whereby they
capture better the extent of the eddies themselves but lose their footprint away from them. As one approaches
the edge of the jet, velocity fluctuations disassociate from the inner vortical region and become affected by a
combination of acoustic effects, sparse spurs of energy from inner regions, and small eddies of secondary
acoustic relevance. This complex combination of influences causes very low velocity coherence and the
“valley” of low length scale !D at the edge of the jet in Fig. 12. Finally, further out from the jet edge, the
acoustic perturbations start to dominate and cause the increase in length scale in the near acoustic region.

The radial evolution of the flow length scales at eight axial stations ranging from G/� 9 = 1 to G/� 9 = 15

is plotted in Fig. 14a for !D and Fig. 14b for !?. The radial trends appear to scale up with the downstream
distance, so they may exhibit a type of self-similar behavior with the growth of the jet. To verify that
hypothesis, we plot the radial distributions of !D and !? in Figs. 15a and 15b, respectively, at several axial
positions and normalized by the momentum thickness X\ of their corresponding location. Additionally, for
the region surrounding the potential core, we define the origin of the radial trends as the inner edge of the
shear layer, A8 (G), as shown in Fig. 6. Consequently, we plot the scales against (A − A8 (G)/X\ (G)).

Figure 15 shows a fair collapse of the curves, particularly for axial locations at G/� 9 ≥ 3 for !D
and G/� 9 ≥ 5 for !?. Length scales at G/� 9 = 1 and G/� 9 = 3 acquire high values at low A, around
(A − A8)/X\ ≤ 3, possibly indicating the influence of coherent waves within the potential core. Overall, all
axial stations show common trends between the SPS (marked in black squares) and the radiator surface (blue
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Fig. 15 Plots of normalized length scale !/X\ versus normalized radius (A − A8)/X\ . a) Based on axial
velocity. b) Based on pressure. Legend is the same in both figures.

circles) even though these trends differ between !D and !?. At high radii of (A − A8)/X\ ≥ 12, the curves
diverge as a result of the acoustic propagation at a variety of directions. Figure 15 is in agreement with the
results by Proença et al. [14], by which fixed-frame D′-based length scales of turbulence grow in accordance
to the jet expansion along the centerline (past the potential core) and lip line. That conclusion is expanded
here for the complete radial trend of the scales inside the vortical field, for both velocity and pressure-based
scales, and axial positions starting from near the nozzle exit.

To quantify the connection between events on the SPS and radiator surface, Fig. 16a plots the the axial
distribution of length scales !D and !? along these surfaces. All the curves exhibit a substantially linear
growth along the first 15 jet diameters. In addition, the length scale on the SPS acquires a higher value when
calculated from velocity fluctuation than from pressure fluctuation. This is an interesting result that challenges
the intuitive prediction that velocity scales would be lower due to a richer content of high frequencies, and
therefore smaller scales [41]. This relation reverses on the radiator surface, where the length scale is higher
when based on pressure fluctuations. Comparing scales based on the same variable, it is evident that those on
the radiator surface are consistently higher than those on the SPS, with the pressure-based scale exhibiting the
strongest increase in this regard. These results suggest that the signature of eddies on the radiator surface is
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more coherent the eddies themselves in the vortical field.
The most relevant connection to establish is between LES-based length scales is that of !D on the SPS,

which would be more representative of the vortical field, and !? on the radiator surface, which would
represent better the acoustic generation. However, this connection might need an adjustment such as a factor
of proportionality. We proceed with that idea, and perform a simple linear fit of one to the other. The result
is shown in Fig. 16b, where the distribution of !? on the radiator is adjusted to that of !D on the SPS by
a factor of 0.74. With the scaling the two curves practically collapse up to to G/� 9=15. This similarity is
encouraging for a connection between the events on the two surfaces.
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Fig. 16 Distribution of length scale ! on the relevant surfaces. Orange solid line: !D on SPS. Blue
dashed line: !D on radiator surface. Green dotted line: !? on SPS. Black line dash-dot: !? on radiator
surface. (a) Calculated values; b) Curve fitting between !D on SPS and !? on radiator surface, the
latter is multiplied by a factor of 0.74.
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Fig. 17 Curve fitting of RANS-based length scale with LES-based length scale. Orange solid line: !D
on SPS. Vermilion line dash-dot: RANS-based ! on SPS with �! = 0.523.

The next step in the analysis of fixed-frame length scales is the comparison with RANS-based (modeled)
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length scales. The latter need to be fitted to the LES-based scales with a factor of proportionality, as shown in
Eq. 11. The result is presented in Fig. 17, where we plot the distribution of RANS-based length scale fitted
over !D with a factor of �! = 0.52 along the SPS. The RANS-based length scale exhibits a linear growth
similar to its LES-based counterpart, indicating the potential for RANS to provide meaningful information on
the turbulent scale.

B. Moving-Frame Length Scales
The distribution of the normalized moving-frame length scale based on axial velocity fluctuation !̂D/� 9

is presented in Fig. 18. The values range from near-zero at the nozzle exit plane to a peak of !̂D/� 9 = 3 inside
the vortical region. There is a strong dependence with axial and radial coordinates and some similarities with
the fixed-frame length scales !D . Again, !̂D increases with downstream distance and exhibits an interesting
radial trend: starting from the jet centerline and going radially outwards, the values reach a local maximum
within the jet and then decay to a local minimum at the edge of the jet. Outwards from the jet edge, the
scales increase to very high values indicating strong coherence linked to acoustic propagation, although the
quantitative values far outside the jet do not account for the angle of propagation. As with the fixed-frame
scale distribution of Fig. 12, we note that !̂D experiences a minimum near the location of the radiator surface.
On the other hand, the radial maxima of !̂D occur inward relative to those of !D, are more localized, and
occur on the SPS.

Fig. 18 Isocontours of normalized moving-frame length scale !̂D/� 9 based on pressure fluctuation.
Red line: SPS. White line: radiator surface.

The corresponding distribution of normalized moving-frame length scale based on pressure fluctuation,
!̂?/� 9 , is shown in Fig. 19. The values range from near-zero at the nozzle exit plane to !̂?/� 9 = 2 within
the vortical field. Within the radiator surface, !̂? follows the same general trends as !̂D but with lower values
and a very weak maximum slightly outside the SPS. Immediately outside the radiator surface !̂? rises rapidly
to high values.

The radial trends of !̂D and !̂? are plotted in Fig. 20 using the same style as Fig. 15. The curves at
locations past the end of the potential core tend to collapse well. Curves at early axial locations also show
good collapse in the case of !̂D in Fig. 20a, but not in the case of !̂? in Fig. 20b. It appears that, along the
first diameters of the shear layer, the scale !̂? acquires larger values that what would correspond to the size of
the shear layer if it were self-similar. This is in contrast to the distribution of !̂D, which is approximately
self-similar and in agreement with the results by Proença et al. [14].

17



Fig. 19 Isocontours of normalized moving-fame length scale !̂?/� 9 based on pressure fluctuation.
Red line: SPS. White line: radiator surface.
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Fig. 20 Plots of normalized moving-frame length scale !̂?/X\ versus normalized radius (A − A8)/X\ .
a) Based on axial velocity. b) Based on pressure. Legend is the same in both figures.

The axial distributions of moving-frame length scales are plotted in Fig. 21a. Contrary to the fixed-frame
length scales, where all curves exhibit a linear growth, here only those based on axial velocity fluctuations
increase linearly. The pressure-based length scale !̂? shows a rapid increase along the first few diameters of
the jet, up to G/� 9 ≈ 3 on both SPS and radiator surface. !̂? acquires a local maximum near G/� 9 = 4 on
the radiator surface, and starts growing in a roughly linear fashion after G/� 9 = 7.5, very near the end of the
potential core. Similarly to the fixed-frame length scales, !̂D is higher than !̂? on the SPS, but lower on the
radiator surface.

The non-linear growth of !̂? on the radiator surface makes it difficult to relate to the linearly-growing
!̂D on the SPS. A simple, proportional curve fit that attempts to match the entire axial span of the curves
presented in Fig. 21a would show no apparent similarity. In fact, figure 20b shows that the high values of !̂?
on the first jet diameters are not limited to the radiator surface, but exist in the whole radial extent along the
first diameters of the jet. Downstream of the potential core, the values of !̂? appear to be consistent with the
linear jet growth. That observation is validated by the linear trend of !̂? in Fig. 21a after G/� 9 = 7.4. We
can tentatively fit the curve of !̂? on the radiator surface to that of !̂D on the SPS, using only the data past
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the end of the potential core. The result is shown in Fig. 21b for a proportionality value of 1.22, where we
observe good similarity along the fitted axial span. The high initial growth of !̂?, and the fact that it forms a
local maximum along the radiator, are interesting findings that remain under investigation.
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Fig. 21 Distribution of length scale !̂ on the relevant surfaces. Orange solid line: !̂D on SPS. Blue
dashed line: !D on radiator surface. Green dotted line: !̂? on SPS. Black line dash-dot: !̂? on
radiator surface. (a) Calculated values; b) Curve fitting of !̂? on radiator surface, multiplied by a
factor of 1.22, to !̂D on SPS.
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Fig. 22 Curve fitting of RANS-based length scale with LES-basedmoving-frame length scale. Orange
solid line: !̂D on SPS. Vermilion line dash-dot: RANS-based ! on SPS with �! = 1.94.

After the analysis of LES-based scales !̂, we compare their evolutions with those of RANS-based length
scales on the SPS. The result is plotted in Fig. 22. The curve of RANS-based length scales is fitted to the
distribution of !̂D through a factor of �! = 1.94. Similarly to the case of fixed-frame length scales, both trends
are linear and easily fitted with a proportionality factor. On the other hand, the distribution of pressure-based
scales !̂? on the SPS does not have such a linear growth and would not render the same agreement when
compared to RANS. Pressure-based scales would require more than a simple linear fit to the RANS scales, a
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topic that is under investigation.

C. Azimuthal Scales
We now present the distribution of azimuthal scales Φ calculated by two-point correlations as defined

in section III. Figures 23 and 24 plot isocontours of azimuthal scales based on axial velocity and pressure
fluctuations, respectively, and include the locations of the SPS and radiator surface. Referring to Fig. 23,
at small low radius A < 0.2� 9 , the azimuthal scale saturates to ΦD = c, indicating strong coherence. This
is expected because events at A → 0 are axisymmetric and correlated. With increasing radius ΦD drops
rapidly to ∼ 0.12c near the SPS and continues decaying until it reaches a radial minimum inside the jet.
Continuing outwards, ΦD increases rapidly outside the jet. The saturated portion of the contour plot suggests
that D′−based azimuthal correlations are not appropriate for characterizing the entirety of the acoustic field.
The distribution of azimuthal scales based on pressure Φ?, displayed in Fig. 24, shows low values within the
vortical field away from the centerline similar to the distribution of scales based on velocity, ΦD. Near the
edge of the jet, Φ? rises rapidly to form a trend of radial maxima outside the radiator surface. This rapid
increase near the jet edge suggests a change in the nature of the disturbances: from compact turbulence eddies
of limited azimuthal span inside the jet to an azimuthally coherent linear signal outside the jet.

Fig. 23 Isocontours of azimuthal scale ΦD based on axial velocity fluctuation, in radians. Red line:
SPS. White line: radiator surface.

Fig. 24 Isocontours of azimuthal scale Φ? based on pressure fluctuation, in radians. Red line: SPS.
White line: radiator surface.

We now study the radial trends of ΦD and ΦD. As with the axial length scales, it is interesting to see
if these trends are consistent with the jet expansion, quantified by the radial momentum thickness X\ . We
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plot the result in Fig. 25a for ΦD and Fig. 25b for Φ?. The curves at various axial stations show very good
collapse, particularly those at G/� 9 ≥ 5 for ΦD and G/� 9 ≥ 5 for Φ?. Near the nozzle exit (represented by
the curve of G/� 9 = 1) the radial trend is qualitatively, but not quantitatively, similar to the common trend at
larger axial locations.
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Fig. 25 Plots of azimuthal scales Φ versus normalized radius (A − A8)/X\ . a) Based on axial velocity.
b) Based on pressure. Color legend is the same in both figures.
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Fig. 26 Distribution of azimuthal scale Φ on the relevant surfaces. Orange solid line: ΦD on SPS.
Blue dashed line: ΦD on radiator surface. Green dotted line: Φ? on SPS. Black line dash-dot: Φ? on
radiator surface.

Axial distributions of ΦD and Φ? on the SPS and radiator surface are plotted in Fig. 26. All curves
exhibit a slower growth than those of axial length scales shown earlier. The flatness of the azimuthal scales
indicates that the azimuthal coherence of the turbulence eddies is not necessarily linked to their growth in the
(G, A) plane. The curves of ΦD along the SPS and radiator, and ΦD along the radiator, show a similar range of
values between Φ = 0.29 and Φ = 0.68 approximately. The distribution of Φ? along the radiator surface
exhibits a notably different trend: it starts with a steep rise up to Φ? = 1.2 at G/� 9 = 3.3, remains flat until
G/� 9 = 15, then decreases slightly. This trend is notably different than that of ΦD on the SPS, which grows
slowly until G/� 9 = 10 at ΦD = 0.45 and then stabilizes. This difference makes the connection between
the SPS and the radiator surface difficult, at least when only attempting a simple proportionality factor to
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connect the two trends. Such attempt, which indeed yields qualitative differences between ΦD on the SPS
and Φ? on the radiator, is plotted in Fig. 27a. This result indicates that there is no straight-forward, linear
connection between integral values of azimuthal scales along the SPS and radiator. Further clarity may come
from using frequency-resolved methods, modal analysis, and separation of hydrodynamic/acoustic fields to
better understand the trends. The LES-based distribution of ΦD is compared with the with RANS-based
azimuthal scale (Eq. 12) in Fig. 27b, where the RANS-based distribution is fitted with a factor �Φ = 0.24.
There is a modest qualitative agreement between the two curves, particularly past G/� 9 = 5.
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Fig. 27 Curve fitting of azimuthal scales: a) 0.35Φ? on radiator surface toΦD on SPS; b) RANS-based
Φ on the SPS, with �Φ = 0.24, to ΦD on the SPS.

VII. Two-Dimensional Correlations
The physical mechanisms that cause the scale distributions discussed in sections VI.A and VI.B can be

further investigated by studying the shape of their associated space-time correlations. Moreover, correlations
performed on a longitudinal plane using a fixed reference point can give valuable insight of the physical
phenomena at play [18]. In this section we present normalized correlations 'DD and '?? for two reference
locations on the SPS.

Space-time correlations 'DD and'DD on an azimuthal plane are plotted in Fig. 28 for three time separations.
The reference point is on the SPS at G = 3� 9 . The normalized time separations are g* 9/� 9 = −1.94 (top
row), 0 (middle row) and 1.94 (bottom row). A vertical dashed line indicates the position that corresponds to
a downstream convective velocity*2 = 0.6* 9 . 'DD shows a compact area of correlation, mostly limited to a
small positive (red) region that travels along the SPS and a negative (blue) oblong region along the radiator
surface. The oblong structure travels with*2 < 0.6* 9 . On the other hand, '?? shows a wavy structure with
strong radial correlation traveling fairly uniformly at a speed near 0.6* 9 . An intriguing characteristic of the
pressure-based structure is that the correlation at non-zero time delays exhibits peaks near the inner and outer
edges of the shear layer. The difference in location, shape, and convective velocity of the features of 'DD and
'?? suggest that the two correlations are portraying different natures of events. The D′-based correlations
reflect compact turbulence events that travel along the SPS and leave their footprint at the edge of the jet in the
form of a negative region of correlation. The ?′-based correlations appear sensitive to interactions of eddies
with the potential flow around them. These observations may explain the difference between moving-frame
length scales !̂D and !̂? of section VI.B and Fig. 21. While !̂D follows the growth of the vortical region,
!̂? appears affected by large-scale events that result from interactions of eddies with the potential flow
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surrounding them; thus, !̂? grows faster than the vortical region in the initial few diameters of the jet.

(a) (b)
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Fig. 28 Contours of 'DD (left column) and '?? (right column) with reference point on SPS at (G, A) =
(3, 0.5)� 9 . Time separations: g = −1.94� 9/* 9 (top row), g = 0 (middle row), and g = 1.94� 9/* 9
(bottom row). Red line: SPS. White line: radiator surface. Black dashed vertical line: positions for a
downstream convection at 0.6* 9 . Color scale ranges from -0.75 (blue) to +0.75 (red).

We now study the evolution of 'DD and '?? with the reference point on the SPS at G = 7.5� 9 , the axial
location of the end of the potential core. Figure 29 displays the resulting correlations at time separations
g* 9/� 9 = −3.49 (top row), 0.00 (middle row) and 3.49 (bottom row). The time progression of 'DD shows
a compact structure of positive correlation traveling along the SPS; its effects are felt above the radiator
surface as a region of negative correlation. At g = 0, the peak of the negative correlation is -0.24. The limited
size of the positive structure indicates that the D′ correlations capture the local but not global effects of the
convecting eddies. The axial velocity fluctuation thus becomes decorrelated as we move from the SPS to the
outer edge of the jet. This explains the region of low correlation between positive and negative structures in
Fig. 29(a,c,d), as well as the “valley” of D′-based length scales in Fig. 12 for !D and Fig. 18 for !̂D .

There is an additional feature of the contours of 'DD of Fig. 29. The positive structure seems to rotate
counter-clockwise as a result of the convective velocity decreasing with radius within the vortical region [11].
The gradient in convective velocity also explains the difference in the location of the radial maxima in the
distributions of !D and !̂D (Figs. 12 and 18, respectively). While the fixed-frame length scale !D peaks
outwards from the SPS, the moving-frame length scale !̂D is extended by the higher convective velocity on the
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SPS and thus peaks on the SPS. This effect is visible in Fig. 29e, where the structure of positive correlation
has traveled further downstream along the SPS than above it.

The time progression of '?? is seen in Fig. 29(b,d,f). A wavepacket-like structure is evident for all
the time separations shown. At zero time separation, contour (d), a region of strong positive correlation
emanates as a radial beam from the reference point to all across the jet, from the centerline to well outside
the radiator surface. It is evident how the footprint of the large-scale structures is imprinted on the radiator
surface. For negative and positive time separations, contours (b) and (f), similar but weaker structures are
seen, with rapid decorrelation for g > 0. The latter may be explained by the decline of the jet velocity past
the end of the potential core and accompanying weakening of sound generation. It is notable that the '??
correlations structures convect fairly uniformly with a speed near 0.6* 9 , while the 'DD structures do not
progress uniformly and their convective speed depends on radial location. These observations lend further
credence to the idea reasoned earlier that pressure-based scales are influenced by the interaction of large eddies
eddies with the surrounding potential flow and not by the local scales of turbulence. This also means that
pressure-based scales may not capture local events as accurately as velocity-based scales. These observations
may shed light on the dilemma noted in sections VI.A and VI.B, namely that higher values of D′-based length
scales than ?′-based scales on the SPS were challenging to interpret as the ?′ signal is expected to filter the
short wavelength components present in D′. In fact, vortex identification methods usually rely on velocity,
not on pressure [43]. Velocity fluctuations describe better the shape of the turbulence eddies and remain
correlated for longer distances than pressure fluctuations, but they do not reflect the footprint of the eddies
inside the vortical field.
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Fig. 29 Contours of 'DD (left column) and '?? (right column) with reference point on SPS at (G, A) =
(7.5, 0.5)� 9 . Time separations: g = −3.49� 9/* 9 (top row), g = 0 (middle row), and g = 3.49� 9/* 9
(bottom row). Red line: SPS. White line: radiator surface. Black dashed vertical line: positions for a
downstream convection at 0.6* 9 . Color scale ranges from -0.75 (blue) to +0.75 (red).
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VIII. Concluding Remarks
We used highly-resolved LES of a Mach 0.9 isothermal turbulent jet to investigate the connection between

the statistics of the vortical field and its pressure signature on the edge of the jet. The representative locations
for those regions are the surface of peak Reynolds stress (SPS) and the radiator surface, respectively. The
definition of the radiator surface introduced in previous works [11] as the location where the convective
velocity equals that on the SPS is used here. The axial and azimuthal scales of the flow field are calculated in
the entire domain of relevance using two-point space-time correlations. The correlations are based on the
axial velocity fluctuation D′ and pressure fluctuation ?′. For the axial scales two definitions are considered,
the fixed-frame scale ! and the moving-frame scale !̂.

The nature of the space-time correlations differs significantly for axial velocity fluctuations and pressure
fluctuations. On the radial-axial plane, pressure-based correlations exhibit a wavepacket-like pattern that
is coherent radially and travels fairly uniformly with the convective velocity *2 on the SPS. On the other
hand, the velocity-based correlation lacks strong radial coherence and its convection is non-uniform and
biased by the mean-flow velocity. These results suggest that velocity-based correlations capture localized
turbulent events, while the pressure-based correlations are dominated by the interaction of large eddies
with the surrounding potential flow. Consequently the axial and radial distributions of the corresponding
length scales exhibit different trends. Pressure-based correlation scales on the radiator surface are larger
than velocity- or pressure-based scales on the SPS, indicating that fine-scale vortical motions do not make a
significant pressure imprint on the radiator surface.

Regarding axial trends, velocity-based length and azimuthal scales increase largely linearly with down-
stream distance, thus following the growth the vortical region. The same holds for moving-frame length
scales based on velocity. However, the moving-frame length scale based on pressure grows rapidly in the first
few jet diameters, then saturates or grows slowly. The effect is most notable on the radiator surface. The
azimuthal scale based on pressure also rises quickly and then saturates.

In the radial direction, starting from the centerline, axial scales based on velocity show a local maximum
inside the vortical region and a local minimum near the edge of the jet, creating a “valley” through which
passes the radiator surface. On the other hand, fixed-frame length scales based on pressure exhibit a monotonic
increase up to a local maximum past the edge of the jet. Moving-frame scales based on pressure show a local
maximum followed by a local minimum within the vortical region, and then rise to a higher maximum past
the edge of the jet. The radial trends of fixed-frame length scales collapse well on a single curve when the
radial coordinate is offset by the radial location of the inner edge of the shear layer and normalized by the
momentum thickness. This works particularly well for axial locations of G ≥ 3� 9 . The same scaling is carried
out with moving-frame length scales and azimuthal scales, with equally good results with the exception of
moving-frame length scales based on pressure whose growth does not follow that of the momentum thickness.
A particularly interesting finding of the study is that the radiator surface passes through a "valley" (local
minimum) of velocity-based length scale (fixed or moving-frame), indicating that the velocity fluctuations
there are mostly decorrelated from events in the core vortical region.

Efforts are placed in connecting the LES-derived velocity scales and RANS-based scales on the SPS.
The RANS values are calculated by “emulating” time-averaged turbulence kinetic energy and dissipation
from the LES flow field. The RANS-based scales show good qualitative agreement with the velocity-based
scales on the SPS, and thus give very similar distributions when fitted through a simple proportionality factor.
The same attempt between pressure-based scales on the radiator and velocity-based scales on the SPS gives
good results for fixed-frame length scales, but the trends suggest the need for non-linear relations when using
moving-frame length scales and azimuthal length scales.
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