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A methodology is presented for treating the propagation of elementary jet noise sources

in the presence of a uniform mean flow. The sources include wavepacket and point sources,

and the propagation includes the diffraction around solid boundaries. The governing equa-

tions are reduced to the canonical wave equation through established transformations. The

impact of the transformations on the wavepacket and point sources is discussed, with atten-

tion on the distinction between sources of pressure and sources of volume. The coupling of

the transformations with the boundary element method, for the prediction of diffraction, is

outlined. The impact of uniform flow on the emission of an acoustic monopole produces a

complicated pressure field with different near- and and far-field scaling laws. The principal

effect of flight speed on the wavepacket emission is to shift the range of radiating axial

wavenumbers, resulting in attenuation and re-direction of the acoustic emission. For both

the wavepacket and monopole, the flight Mach number causes a compaction of the acoustic

field downstream of the source, a trend that benefits the shielding of those sources.

Nomenclature

a∞ = freestream speed of sound
A = wavepacket amplitude function
f = cyclic frequency
G = Green’s function
k = acoustic wavenumber = ω/a∞
kx = axial wavenumber
kr = radial wavenumber
M∞ = freestream Mach number
Mc = convective Mach number
R,R∗,R = source-observer distances
p = pressure
r = radial distance in polar coordinate system
Sr = Strouhal number
t = time
u = velocity vector
U∞ = freestream velocity
x = (x, y, z) = position vector
α = instability wavenumber
κ = modified acoustic wavenumber
θ = polar angle relative to jet axis
ψ = azimuth angle
φ = acoustic velocity potential
ρ∞ = freestream density
ω = angular frequency
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Modifiers

(̂ ) = axial Fourier transform

(̃ ) = transformed domain

I. Introduction

Prediction of propulsion-airframe integration noise requires physical models for the noise sources in
conjunction with efficient propagation tools. The turbulent mixing noise of the engine exhaust is particularly
challenging to model in a way that is physically meaningful yet simple enough to enable the development
of design tools. Recently, the wavepacket model for the jet noise source has shown some promise in this
regard.1 The wavepacket, in combination with a weak monopole, captures the far-field directivity of the jet
noise and provides diffraction predictions that are in reasonable agreement with experiments. The process
involves the development of a parametric model, calibration of the model parameters by matching the
experimental statistics of the isolated jet, and application of the model to the diffraction problem using
a suitable propagation scheme, such as the boundary element method (BEM)2 or the fast scattering code
(FSC).3

The aforementioned diffraction predictions had been conducted for static jets. Aircraft noise is inherently
based on forward flight, so it is important to include the Mach number effects in the modeling and propagation
of the noise sources. The first-order approximation is to treat the flow field as uniform, which enables
transformations that reduce the problem to a static form for all subsonic Mach numbers. Alternative
approaches treat propagation in a potential flow field, but are limited to low Mach number.4

This report outlines the methodology for treating wavepacket and point sources with uniform flow for
the purpose of source parameterization and eventual prediction of scattering. The methodology involves
transformations that reduce the convective wave equation to the canonical wave equation. Even though
these transformations are established, there are subtleties that unless understood could lead to erroneous
approaches. For this reason, the report starts from the fundamentals and provides a methodical treatment
of the transformations in the time and frequency domains. For consistency, all the transformed parameters

are indicated by the (̃ ) notation.

II. Theoretical Background

This section provides a review of sound propagation in uniform flow and the basis of the boundary element
method.

A. Time Domain Analysis

1. Convective wave equation

Consider the acoustic propagation in a medium with a uniform mean velocity U∞ in the x-direction and
constant mean speed of sound a∞ (Fig. 1). The velocity field is

u(x, t) = U∞i + u′(x, t)

where i is the unit vector in the axial direction. The propagation of an acoustic pressure disturbance p′ is
governed by the convective wave equation

1

a2∞

∂2p′

∂t2
+ 2

M∞

a∞

∂2p′

∂x∂t
−
[
(1 −M2

∞)
∂2p′

∂x2
+
∂2p′

∂y2
+
∂2p′

∂z2

]
= 0 (1)

The acoustic potential φ and the density perturbation ρ′ also satisfy the above equation. Comparing with
the canonical wave equation we note two differences: the mixed-derivative term ∂2/∂x∂t and the “Prandtl-
Glauert” factor 1−M2

∞ multiplying the ∂2/∂x2 term. The momentum equation relates pressure and acoustic
potential as follows:

p′ = −ρ∞
Dφ

Dt
=

∂φ

∂t
+ U∞

∂φ

∂x
(2)
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Figure 1. Acoustics with uniform flow.

2. Transformation to the canonical form

The Lorentz-type transformations

t̃ =
√
1−M2

∞ t+
1√

1−M2
∞

M∞

a∞
x

x̃ =
x√

1−M2
∞

(3)

reduce the convective wave equation to the canonical form

∂2p′

∂t̃2
− a2∞∇2

x̃ p
′ = 0 (4)

with

∇x̃ =

(
∂

∂x̃
,
∂

∂y
,
∂

∂z

)

This enables the use of tools developed for the classical wave equation. The problem is solved in the
transformed domain, then converted to the original domain by reversing the transformations. Note that
first-order relations like Eq. 2 do not transform into their static counterparts.

3. Solutions using free-space Green’s function

In the transformed domain, the free-space Green’s function satisfies

∂2G̃

∂t̃2
− a2∞∇2

x̃G̃ = δ(x̃− x̃s)δ(t̃− t̃s) (5)

and its solution is

G̃(x̃, t̃|x̃s, t̃s) =
1

4π|x̃− x̃s|
δ(t̃− t̃s − |x̃− x̃s|/a∞) (6)
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Expressed in the original coordinates, the Green’s function becomes

G(x, t|xs, ts) =
1

4πR∗
δ(t− ts −R/a∞) (7)

R =
1

1−M2
∞

[R∗ −M∞(x− xs)] (8)

R∗ =
√
(x− xs)2 + (1−M2

∞)[(y − ys)2 + (z − zs)2] (9)

This form of the Green’s function was first derived by Blokhintsev.5 It has since been used by a variety of
investigations, such as Ref. 6.

Knowledge of the free-space Green’s functions with uniform flow allows construction of the solution for
an arbitrary source in a 3D unbounded domain.

p′(x, t) =

∫

Vs

Sp(xs, t−R/a∞)

4πR∗
d3xs (10)

φ(x, t) =

∫

Vs

Sφ(xs, t−R/a∞)

4πR∗
d3xs (11)

with R and R∗ as defined in Eqs. 8 and 9, respectively. Here Sp and Sφ are sources for the pressure and
velocity potential, respectively. This distinction is important because the convection effects act differently
on each type of source.

B. Frequency Domain

1. Governing equation

On applying the substitutions
p′(x, t) → p(x)e−iωt

φ(x, t) → φ(x)e−iωt
(12)

the convective wave equation (Eq. 1) assumes the harmonic form

k2p− 2ikM∞
∂p

∂x
−
[
(1−M2

∞)
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

]
= 0 (13)

The relation between pressure and acoustic potential, Eq. 2, becomes

p(x) = −ρ∞
(
−iω + U∞

∂

∂x

)
φ(x) = ρ∞a∞

(
ik −M∞

∂

∂x

)
φ(x) (14)

2. Transformation to the canonical form

To reduce the problem to the ordinary Helmholtz equation the transformations of Eq. 3 are used. The new
variable x̃ reduces the terms inside the brackets of Eq. 13 to the Laplacian in the coordinate system (x̃, y, z).
The time transformation can be written as

t =
t̃√

1−M2
∞

− M∞

a∞

x̃√
1−M2

∞

and eliminates the second term on the left-hand side of Eq. 13. The full expression for p′ becomes

p(x)e−iωt = p(x) exp

(
−i ω√

1−M2
∞

t̃

)
exp

(
i
ω

a∞

M∞√
1−M2

∞

x̃

)

This means that we are working with a new frequency ω̃ = ω/
√
1−M2

∞ and thus a new wavenumber

k̃ = k/
√
1−M2

∞. In addition, the dependent variable is no longer p but the transformed variable

p̃ = peiκx̃ (15)
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with κ = kM∞/
√
1−M2

∞. Equation 13 reduces to the ordinary Helmholtz equation in the transformed
domain:

∇2
x̃p̃ + k̃2p̃ = 0 (16)

In summary the variable and coordinate transformations are as follows:

(x, y, z) → (x̃, y, z) , x̃ =
x√

1−M2
∞

ω → ω̃, ω̃ =
ω√

1−M2
∞

k → k̃, k̃ =
k√

1−M2
∞

p̃ = peiκx̃, κ = k
M∞√
1−M2

∞

(17)

These transformations can be found in several past works, including the paper by Wu and Lee,7 with the
difference that they assumed a harmonic convention exp(+iωt). Working directly in the frequency domain
one may miss that the variable and frequency transformations in Eq. 17 originate from the simple t and x
transformations of Eq. 3.

3. Green’s function solutions

The Green’s function in the transformed domain satisfies

∇2
x̃G̃ + k̃2G̃ = −δ(x̃− x̃s) (18)

whose solution is

G̃(x̃|x̃s) =
1

4π|x̃− x̃s|
exp(ik̃|x̃− x̃s|) (19)

Obviously it has the same form as the Green’s function for the static case. This enables the use of numerical
methods based on the static free-space Green’s function, such as the Boundary Element Method (BEM), to
compute scattering problems in the transformed domain.

The Green’s function may also be expressed in the original domain as

G(x|xs) =
eikR

4πR∗
(20)

with R and R∗ defined in Eqs. 8 and 9. Therefore, the general solution for the harmonic problem is

p(x) =

∫

Vs

Sp(xs)
eikR

4πR∗
d3xs

φ(x) =

∫

Vs

Sφ(xs)
eikR

4πR∗
d3xs

R =
1

1−M2
∞

[R∗ −M∞(x− xs)]

R∗ =
√
(x− xs)2 + (1−M2

∞)[(y − ys)2 + (z − zs)2]

(21)

The distinction between sources of pressure (Sp) and sources of acoustic potential (Sφ) is again crucial as
will be discussed in the next section. The solution form of Eq. 21 is useful for solving 3D free-space problems,
but is not applicable to scattering problems using the standard BEM. To use the BEM, the computation
needs to be done in the transformed domain.

4. Boundary Element Method

Boundary integral formulations are central to solving acoustic scattering and radiation problems.2 The
general problem setup is depicted in Fig. 3. Below is a brief review of the boundary element method for
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iip φ,

Source
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x
Observer

r = |x-y|n

nu
n

=
∂
∂φ

Figure 2. Acoustic scattering/radiation problem.

the canonical Helmholtz equation. Flow effects can be introduced by applying the BEM in the transformed
domain.

The BEM has exactly the same form for all the acoustic scalar variables, although surface boundary
conditions may be different for each variable. The BEM for the acoustic potential is

c(x)φ(x) =

∫

S

[
G(x|y)∂φ(y)

∂n
− ∂G(x|y)

∂n
φ(y)

]
d2y + φi(x) (22)

and the BEM for the acoustic pressure is

c(x)p(x) =

∫

S

[
G(x|y)∂p(y)

∂n
− ∂G(x|y)

∂n
p(y)

]
d2y + pi(x) (23)

In the above equations, G is the Green’s function; c(x) takes the values 1 in the exterior, 1/2 on the surface
(assuming the surface is smooth), and 0 in the interior of the body; and subscript i denotes the incident
field. The variable or its normal derivative are prescribed on the surface (for example, p or ∂p/∂n).

The normal velocity on the surface is

un = u · n = ∇φ · n =
∂φ

∂n
(24)

Recalling the relation between pressure and acoustic potential in the static environment, Eq. 25, the normal
derivative of the pressure is

∂p

∂n
= iωρ∞

∂φ

∂n
= iωρ∞un (25)

For a rigid body, un = 0 so the normal derivatives of pressure and potential both vanish on the surface. So
for problems of scattering by rigid bodies, the BIEs for pressure and acoustic potential will give identical
results, within a constant.

III. Acoustic Monopole

A. Definition

The monopole is a volume source/sink visualized as a uniformly-pulsating sphere with radius ε much smaller
than the acoustic wavelength λ = a∞/f , where f is the cyclic frequency. It is important to realize that the
monopole, as traditionally defined, is a source of volume. Thus the velocity potential is the natural variable
for the monopole. The monopole is not directly a source of pressure. The pressure is determined through
the conservation equations once the solution for φ is obtained. Accordingly, the monopole source is

Sφ(xs, ts) = q(ts)δ(xs) (26)
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Applying the general solution of Eq. 7,

φ(x, t) = −q(t−R/a∞)

4πR∗
(27)

with R and R∗ defined by Eqs. 8 and 9. The solution for the pressure perturbation is

p′(x, t) = −ρ∞
Dφ

Dt
= ρ∞

(
∂

∂t
+ U∞

∂

∂x

)
q(t−R/a∞)

4πR∗
(28)

and results in a fairly complex expression.
For the harmonic problem q(t) = Q exp(−iωt),

φ(x) = Q
eikR

4πR∗
(29)

and

p(x) =
ρ∞a∞Q

4π

(
−ik +M∞

∂

∂x

)
eikR

R∗
(30)

After some straight-forward differentiations, the pressure field becomes

p(x) = −Qρ∞a∞
eikR

4πR∗

[
ik

1−M∞
x
R∗

1−M2
∞

+M∞
x

R∗2

]
(31)

The pressure field thus becomes significantly more complicated than in the static case. Inside the square
brackets, the first term depends on wavenumber and the second term is independent of wavenumber and
decays with the square of the transformed distance. The second term disappears in the far field but it could
be dominant in the near field, particularly at low wavenumber and high Mach number.

It is instructive to examine the amplitudes of the acoustic potential and the pressure. For the acoustic
potential,

|φ|(x) =
Q

4πR∗
(32)

We note that the magnitude of φ is independent of frequency (wavenumber). Recalling the definition of R∗

from Eq. 9, the φ amplitude is affected by the Prandtl-Glauert transformation of the y and z coordinates. As
the Mach number increases, there is a transverse stretching of the φ amplitude, so the disturbance penetrates
more in the y and z directions. The amplitude of the pressure field is

|p|(x, k) = Qρ∞a∞
1

4πR∗

√
k2
(
1−M∞

x
R∗

1−M2
∞

)2

+M2
∞

x2

R∗4
(33)

In the far field, the second term inside the square root becomes negligible:

|p|(x, k) ≈ Qρ∞a∞
k

4πR∗

|1−M∞
x
R∗

|
1−M2

∞

(34)

For low Mach number (M2
∞ << 1), this further simplifies to

|p|(x, k) ≈ Qρ∞a∞
k

4πR
∣∣∣1−M∞

x

R∗

∣∣∣ (35)

where R is the physical distance between observer and monopole. Recognizing the terms outside the absolute
value as the amplitude of the monopole in a static environment,

|p|(x, k) ≈ |p0|(x, k)
∣∣∣1−M∞

x

r

∣∣∣ (36)

where subscript 0 denotes the static case. It is evident from Eqs. 33-36 that the free stream causes an
upstream amplification of the acoustic field. This effect was noted by Taylor4 in his analysis of acoustic
propagation in a moving medium.
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The effect of the free stream on the acoustic field of the monopole is illustrated in Fig. 3. The monopole
is situated at the origin (0, 0, 0) and the Mach number takes the values M∞ = 0, and 0.6. Figure 3 plots
isocontours of the real part and the magnitude of the acoustic potential φ and pressure p. The contours of the
real part of φ show the expected downstream convection of the wavefronts. As noted earlier, the magnitude of
φ distorts into an oval-shaped distribution penetrating further into the transverse direction. The distortion
is minimal at low Mach number. The complexity of the pressure field is evident by the contours of its
real part. Notable are the downstream convection of the wavefronts and the amplification upstream of the
monopole. The upstream amplification is further evident by the pressure magnitude contours; it is caused
by the collapse of the wavefronts ahead of the monopole with increasing Mach number.
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Figure 3. Acoustic fields for a monopole with ρ∞a∞Q=1 and k = 10.

B. Ramification on Selection of Green’s Functions

Comparing the acoustic potential field of the monopole, Eq. 29, with the Green’s function Eq. 20, we note that
they are identical within a constant. On the other hand, the pressure field given by Eq. 31 is fundamentally
different from the Green’s function. This means that, for uniform flow, the Green’s function represents the
acoustic potential field of a monopole but does not represent its pressure field. To put it in a different way,
the statement

Sp(xs, ts) = q(ts)δ(xs)

does not represent a monopole in uniform flow. It represents a pressure point source (PPS) which does not
have a physical basis. The distinction between the monopole and the PPS disappears at M∞ = 0. With
M∞ > 0, however, their fields are different. When working in the transformed domain, the proper variable
for the monopole is the acoustic potential. On the other hand, one may choose to work with the PPS as a
fictitious source for the purpose of source parameterization, to be discussed in Section V. It is obvious that
the pressure field for the PPS has the same form as the acoustic-potential field for the monopole, that is,

p(x) = Q
eikR

4πR∗
(37)

where Q now is the strength of the PPS and has no direct connection to volume injection.
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IV. Wavepacket

A. Wavepacket as a Model for the Jet Noise Source

At its most general interpretation, the wavepacket model is an application of Kirchhoff’s integral theorem.8

The wavepacket model builds on the foundational works by Tam and Burton,9 Crighton and Huerre,10 Avital
et al.11 and Morris.12 There is increasing experimental evidence that the peak noise radiation is caused
by an instability-wave mechanism, as evidenced by a number of near-field experiments, for example the
works of Reba et al.13 Following the analysis by Morris,12 we consider a cylindrical surface surrounding a
turbulent jet (Fig. 4). The radius r0 of the surface is sufficiently close to the jet to sense both the radiating
and non-radiating (hydrodynamic) components of the turbulent pressure fluctuations. On the wavepacket
surface r = r0 we prescribe a pressure disturbance p0(x)e

inψ , or an acoustic potential φ0(x)e
inψ , where n is

the helical mode and ψ is the azimuthal angle.

r

Wavepacket surface

x

ψ

r0

Figure 4. Wavepacket surface for the jet noise source.

B. Solution for Static Medium

1. Exact solution

Although we could use the general Kirchhoff formula to obtain the solution off the surface, it is more insightful
to use the solution of the wave equation in cylindrical coordinates:

p(x, r, ψ) =
1

2π
einψ

∫ ∞

−∞

p̂0(kx)
H

(1)
n (krr)

H
(1)
n (krr0)

eikxxdkx (38)

φ(x, r, ψ) =
1

2π
einψ

∫ ∞

−∞

φ̂0(kx)
H

(1)
n (krr)

H
(1)
n (krr0)

eikxxdkx (39)

where
kr = (k2x − k2)1/2, −π

2
< arg(kr) <

π

2
(40)

In Eqs. 38-40, k = ω/a∞ is the acoustic wavenumber; (̂) denotes the spatial Fourier transform; kx is the

axial wavenumber; kr is the radial wavenumber; and H
(1)
n is the Hankel function of the first kind of order

n. The solution is radiating for |kx| ≤ k, for which kr is real; and decaying for |kx| ≥ k, for which kr is
imaginary.

It is typical to prescribe an axial disturbance of the form p0(x) = A(x)eiαx, with A(x) the amplitude
modulation and α the wavenumber of the instability. In that case, p̂0 has the generic form

p̂0(kx) = Â(kx − α) (41)

This means that the Fourier transform is “centered” at the axial wavenumber kx = α. Figure 7 shows a
symbolic graph of Â versus kx. The instability wavenumber α is related to the convective Mach number Mc

via

Mc =
Uc
a∞

=
ω/α

a∞
=

k

α
(42)

or
k = Mcα (43)
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The example in Fig. 5 considers a subsonic instability with Mc < 1, therefore k < α. Only the part of Â in
the range −k ≤ kx ≤ k radiates to the far field. With increasing Mc more of the “energy” contained in Â
radiates to the far field.

)(ˆ α−xkA

kx

α-k k0
Radiating 

wavenumbers

Figure 5. Wavepacket radiation for static case.

Recalling that p and φ are related through p = ikρ∞a∞φ, the corresponding relation of their transforms
is

p̂ = ikρ∞a∞φ̂ (44)

2. Far-field approximation

R
r x

z

y

θ

ψ

θ~

r

z

y

ψ
R~

21
~

∞−
=

M

x
x

ORIGINAL DOMAIN TRANSFORMED DOMAIN

Figure 6. Coordinate system for far-field treatment of wavepacket.

Referring to the coordinate system of Fig. 6, when the observer is in the far field, Eq. 38 simplifies to

p(R, θ, ψ) = − i

πR
p̂0(k cos θ)

H
(1)
n (kr0 sin θ)

ei(kR+nψ) (45)

The argument of p̂0 ranges from −k at θ = 180◦ to k at θ = 0◦, consistent with the range of radiating axial
wavenumbers. The intensity in the far field is

|p|2(R, θ) =
1

(πR)2

∣∣∣∣∣
p̂0(k cos θ)

H
(1)
n (kr0 sin θ)

∣∣∣∣∣

2

(46)

C. Solution for Subsonic Uniform Flow

The problem of a wavepacket in a uniform flow with Mach number M∞ < 1 is now considered. Using the
transformations listed in Eq. 17, the governing equation reduces to the ordinary Helmholtz equation. This
means that the solutions for the static case, Eqs. 38-40, are valid in the transformed domain. Figure 7

10 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

im
itr

i P
ap

am
os

ch
ou

 o
n 

Ja
nu

ar
y 

15
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
32

6 



x

ψ

r0

M�
M� ψ

r0

ψinexp )(0

ψinexp )~(~
0

)(

),,(

x

x

p

a
k

rx

∞

=

=
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1
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x~

r r

Figure 7. Transformation to static problem.

summarizes the variables and their transformations. The analysis that follows is done for the pressure but
it is equally valid for the acoustic potential. The transformed pressure is

p̃ = p(x)eiκx̃, κ = k
M∞√
1−M2

∞

(47)

It can be easily derived that the Fourier transform of p̃ in x̃ is

̂̃p (kx̃, r, ψ) =
1√

1−M2
∞

p̂

(
kx̃ − κ√
1−M2

∞

, r, ψ

)
(48)

1. Exact solution

The solution for p̃(x̃) is obtained by using Eq. 38 in the transformed domain:

p̃(x̃, r, ψ) =
1

2π
einψ

∫ ∞

−∞

̂̃p0(kx̃)
H

(1)
n (krr)

H
(1)
n (krr0)

exp(ikx̃x̃)dkx̃ (49)

with
kr = (k̃2 − k2x̃)

1/2, −π
2
< arg(kr) <

π

2
(50)

Using Eq. 48,

p̃(x̃, r, ψ) =
1

2π
einψ

1√
1−M2

∞

∫ ∞

−∞

p̂0

(
kx̃ − κ√
1−M2

∞

)
H

(1)
n (krr)

H
(1)
n (krr0)

exp(ikx̃x̃)dkx̃ (51)

The inverse transformation p(x, r, ψ) = p̃(x̃, r, ψ) exp(−iκx̃) gives the pressure in the original domain:

p(x, r, ψ) =
1

2π
einψ

e−iκx̃√
1−M2

∞

∫ ∞

−∞

p̂0

(
kx̃ − κ√
1−M2

∞

)
H

(1)
n (krr)

H
(1)
n (krr0)

exp(ikx̃x̃)dkx̃ (52)

Letting kx denote the argument p̂0 in Eq. 52, and expressing all the coefficients in terms of kx, the equation
reduces to

p(x, r, ψ) =
1

2π
einψ

∫ ∞

−∞

p̂0(kx)
H

(1)
n (krr)

H
(1)
n (krr0)

exp(ikxx)dη (53)
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with
kr =

[
(k − kxM)2 − k2x

]1/2
, −π

2
< arg(kr) <

π

2
(54)

We recover the form of the static case, Eq. 38, except that the radial wavenumber contains Mach number
effects. The roots of kr = 0 are

kx = − k

1−M∞
,

k

1 +M∞

Within the two roots, the pressure field is radiating. Outside the roots, the field is decaying. As M∞

increases, the radiating band of axial wavenumbers shifts to the left, thus less energy is emitted to the far
field. This trend is illustrated in Fig. 8.

2. Far field approximation

We apply the transformations of Eq. 17 to the far-field solution of Eq. 45. In the far-field coordinate system
of Fig. 6, the stretching of the x-axis causes changes in the distance and polar angle of the observer. Denoting
those variables R̃ and θ̃, respectively, the far-field solution is

p̃(R̃, θ̃, ψ) = − i

πR̃
√
1−M2

∞

̂̃p0(k̃ cos θ̃)
H

(1)
n (k̃r0 sin θ̃)

ei(k̃R̃+nψ) (55)

Using Eq. 48 and applying the inverse variable transformation, the pressure in the original domain is

p(R, θ, ψ) = − i

πR̃
e−iκx√
1−M2

∞

p̂0

(
k̃ cos θ̃−κ√

1−M2
∞

)

H
(1)
n (k̃r0 sin θ̃)

ei(k̃R̃+nψ) (56)

It is convenient to express the transformed distances in terms of the parameters R and R∗ defined for the
Green’s function, Eq. 21, tailored to the coordinate system of Fig. 6:

p(R, θ, ψ) = − i

πR∗

p̂0

(
k(cos θ̃−M∞)

1−M2
∞

)

H
(1)
n

(
k√

1−M2
∞

r0 sin θ̃

)ei(kR+nψ)

R =
1

1−M2
∞

[R∗ −M∞x]

R∗ =
√
x2 + (1−M2

∞)r2

(57)

Equation 58 shows explicitly the effect of Mach number M∞ on the far-field radiation of the wavepacket. As
θ̃ increases from 0 to π, the argument of p̂0 ranges from k/(1 +M∞) to −k/(1 −M∞). This is consistent
with the behavior of the exact solution discussed previously and illustrated in Fig. 8.

Finally, the far-field intensity is

|p|2(R, θ) =
1

(πR∗)2

∣∣∣∣∣∣∣∣

p̂0

(
k(cos θ̃−M∞)

1−M2
∞

)

H
(1)
n

(
k√

1−M2
∞

r0 sin θ̃

)

∣∣∣∣∣∣∣∣

2

(58)

with R∗ defined in Eq. 58. In Eqs. 56-58, the transformed polar angle is obtained from

θ̃ = arctan
(√

1−M2
∞ tan θ

)
(59)

3. Examples

The examples that follow simulate the source of a jet with velocity Uj=400 m/s, radius r0, and Strouhal
number Sr = 2fr0/Uj = 0.2. The convective velocity of the instability wave is assumed to be Uc =
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)(ˆ α−xkA

kx

α0

Radiating 
wavenumbers

∞+ M

k

1∞−
−

M

k

1

Figure 8. Wavepacket radiation for uniform subsonic flow.

0.7Uj = 280 m/s. The speed of sound is a∞ = 345 m/s, thus the convective Mach number is subsonic at
Mc = Uc/a∞=0.81. We consider a Gaussian wavepacket with pressure distribution on r = r0 prescribed as

p0(x) = e−[(x−b)/b]2eiax

with b = 4r0 and the instability wavenumber satisfying α = ω/Uc. The exact solution of the pressure field,
Eq. 53, is computed for Mach numbers M∞=0.00, 0.20, 0.50, and 0.81. The significance of the last Mach
number is that it equals the convective Mach number of the instability, thus the “relative” Mach number of
the instability is zero.

Figure 9 plots isocontours of the the real part and the magnitude of the pressure field for the different
free-stream Mach numbers. With increasing Mach number the pressure field weakens considerably. However,
even at M∞ = 0.81 (where the relative Mach number of the instability is zero) there is a finite amount of
energy being radiated to the far field. This is evident from the radiating wavenumber band of Fig. 8: M∞

may increase up to 1.0 (the limit of this analysis) and there is still some wavepacket energy in the range
kx = −∞ to k/2. The far-field intensity is computed using Eq. 59. Figure 10 plots the intensity at fixed
radius versus polar angle for the aforementioned free-stream Mach numbers. The intensity levels decline,
particularly at the high polar angles. This produces a narrowly focused beam of acoustic energy at low polar
angles for this particular wavepacket form.

V. Source Parameterization

A. General Concept

The noise source model can be expressed in terms of a finite set of parameters, which are determined from
acoustic field measurements. This process is called parameterization. The field F is typically represented in
the form of statistics such as auto-spectra or cross-spectra. Denote F = F1, F2, . . . FN denote the field at
points n = 1, 2, . . . , N . The modeled field is cast in terms of a parameter vector Aj , j = 1, . . . , J :

Fmod(Aj)

The experimental field is Fexp. The parameter vector is sought via the least-squares minimization of

f(Aj) = ||Fmod(Aj)− Fexp||2 (60)

Various minimization approaches are available for this task, including the conjugate-gradient method.

B. Parameterization Based on Autospectra

Perhaps the simplest type of parameterization involves “matching” of the modeled and experimental au-
tospectra (intensities) in the far field. In the past, the incoherent combination of a wavepacket and a
monopole was used to simulate the acoustic intensity in the far field of a jet. These simulations were done
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Figure 9. Pressure field of Gaussian wavepacket with increasing Mach number.
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Figure 10. Polar directivity of far-field intensity for Gaussian wavepacket.

at static conditions. This section presents the corresponding relations for parameterizing the noise source
with forward flight. The modeled far-field intensity for a given frequency is

|p|2mod = |p|2w + |p|2m (61)

where the subscripts w and m refer to the wavepacket and the monopole, respectively. Using Eqs. 58 and
34,

|p|2mod(x, Aj) =
1

(πR∗)2





∣∣∣∣∣∣∣∣

p̂0

(
k(cos θ̃−M∞)

1−M2
∞

, A1,...,J−1

)

H
(1)
n

(
k√

1−M2
∞

r0 sin θ̃

)

∣∣∣∣∣∣∣∣

2

+A2
J

(
ρ∞a∞k

4

1−M∞
x
R∗

1−M2
∞

)2





(62)

Here the wavepacket shape p0(x) is parameterized in terms of Aj , j = 1, . . . , J−1; and the monopole strength
is AJ . As before, the transformed distance R∗ is

R∗ =
√
x2 + (1−M2

∞)r2

Alternatively the monopole can be replaced by the fictitious pressure point source (PPS) discussed in Section
IV.B:

|p|2mod = |p|2w + |p|2
PPS

(63)

Then

|p|2mod(x, Aj) =
1

(πR∗)2





∣∣∣∣∣∣∣∣

p̂0

(
k(cos θ̃−M∞)

1−M2
∞

, A1,...,J−1

)

H
(1)
n

(
k√

1−M2
∞

r0 sin θ̃

)

∣∣∣∣∣∣∣∣

2

+
A2
J

16





(64)

with AJ now representing the strength of the PPS.

VI. Boundary Element Method with Uniform Flow

Having established the propagation relations of monopole and wavepacket sources in a uniform sub-
sonic freestream, we provide guidelines on their implementation in computational problems using the BEM
reviewed in Section II.B. The BEM is a powerful method for solving radiation and scattering problems.
Available implementations of the BEM solve the canonical Helmholtz equation. For acoustic problems with
uniform flow, the BEM must be used in the transformed domain. In the study of propulsion/airframe
integration effects, the BEM can be used for computing both the scattered field and the radiated field of
complex surface-prescribed sources like the wavepacket. The analytical solution of wavepacket emission (e.g.,
Eq. 38) requires the use of a Fast Fourier Transform (FFT) at each surface and field point, a process that
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is computationally demanding and can require a long time before the incident field is computed. The BEM
can give a faster solution, particularly when a large number of field points is involved.

If the problem involves a scattering surface, this surface must be slender to justify the uniform flow
approximation. In other words, the slopes must be very small. Under this condition, the solid boundary
condition in the transformed domain is approximately the same as in the original domain:

∂p̃

∂ñ
≈ 0

∂φ̃

∂ñ
≈ 0

(65)

The sections that follow detail the BEM implementation for the wavepacket, monopole, and pressure
point source. In all cases, the source parameters would be determined through the parameterization scheme
discussed in Section V.

A. Wavepacket

The computation process for the wavepacket is summarized in Fig. 11. Having done the parameterization
approach of Section V, the wavepacket surface pressure distribution on r = r0, p0(x)e

inψ , is known in the
original domain.

x~x

y
ψinexp )(0

M� Wavepacket
cylinder or BEM 
surface

Solid boundary

y
ψκψ inxiin eexpexp

~ 
00 )()~(~ =

BEM done in transformed 
domain.  Result: 

)~(~ xp)~  exp()~(~)( xipp κ−= xx

ORIGINAL DOMAIN TRANSFORMED DOMAIN

)~(~ xip

0=
∂
∂
n

p
0~

~
≈

∂
∂
n

pn n~

Figure 11. BEM approach for wavepacket.

Moving now to the transformed domain, using the variable transformation of Eq. 47, the prescribed
pressure on the wavepacket surface is

p̃0(x̃) = p0(x)e
iκx̃

The problem now involves the transformed frequency ω̃ = ω/
√
1−M2

∞ (cyclic frequency f̃ = f/
√
1−M2

∞)

and transformed acoustic wavenumber k̃ = ω̃/a∞. The exact solution for the pressure field is given by Eq.
49. In essence, we are solving the static problem with a different surface pressure distribution and a different
acoustic wavenumber. The resulting pressure field is the incident field p̃i(x̃) for scattering problems. To
clarify how the transformed surface pressure differs from the one in the original domain, suppose that p0(x)
has the form

p0(x) = A
( x
L

)
exp(iαx)

with α the instability wavenumber and L a characteristic length scale of the amplitude modulation. In the
transformed domain, we have

p̃0(x̃) = A

(
x̃

L/
√
1−M2

∞

)
exp

[
i(α
√
1−M2

∞ + κ)x̃
]

The first-order effect is the addition of κ to the spatial oscillation frequency which increases the wavenumber
of the instability in the transformed domain. The second-order effect, from the

√
1−M2

∞ terms, is the
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stretching of the amplification envelope; it is a minor effect unless M∞ is high subsonic. Figure 14 demon-
strates these effects by assuming A(x/L) = exp[−(x/L)2], L = 1, α = 1, and k = 0.8. The transformation
for Mach numbers 0.3 and 0.8 is shown. For M∞ = 0.3, we note the increased spatial frequency with minor
stretching of the envelope. AtM∞ = 0.8, the spatial oscillation becomes rapid and the envelope is elongated
significantly.
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Figure 12. Illustration of how the waveform p0(x) changes in the transformed domain for M∞ = 0.3 and 0.8.

The scattering surface is represented in the x̃ domain by stretching its x− coordinates by the factor
1/
√
1−M2

∞. With the wavepacket incident field computed, the BEM gives the total (scattered plus incident)
field p̃(x̃) in the transformed domain. The pressure field in the original domain is obtained from the inverse
transformation

p(x) = p̃(x̃)e−iκx̃

B. Monopole

The treatment of the monopole warrants particular attention because of the complexities discussed in Section
III.B. Referring to Fig. 13, the strength of the monopole Q is determined through the parameterization
process of Section V (Eq. 63). This strength is then used to compute the acoustic potential field in the
transformed domain using the static version of Eq. 29:

φ̃(x̃) =
Q

4π|x̃− x̃s|
eik̃|x̃−x̃s|

where x̃s is the center of the monopole in the transformed domain. In scattering problems, this is the
incident field φ̃i(x̃). The BEM then gives the total field φ̃(x̃) in the transformed domain. The inverse
variable transformation gives the acoustic-potential field in the original domain:

φ(x) = φ̃(x̃)e−iκx̃

and the pressure is obtained from Eq. 14.

C. Pressure Point Source (PPS)

Referring to Fig. 14, the strength Q of the PPS is determined from the parameterization process of Section
V (Eq. 65). The strength is then used to compute the pressure in the transformed domain using the Green’s
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Figure 14. BEM approach for pressure point source (PPS).

function, Eq. 19:

p̃(x̃) =
Q

4π|x̃− x̃s|
eik̃|x̃−x̃s|

where x̃s is the center of the PPS in the transformed domain. In scattering problems, this is the incident
field p̃i(x̃). Using the BEM one obtains the total field p̃(x̃) in the transformed domain. The inverse variable
transformation gives the pressure field in the original domain:

p(x) = p̃(x̃)e−iκx̃

D. BEM Surface for Wavepacket

As an alternative to the analytical solution of the wavepacket incident field, which can be computationally
demanding, the BEM may be used to compute the radiated field of the wavepacket. The computational
mesh for this purpose is illustrated in Fig. 15. The source length Xsourceis based on the criterion of the
envelope amplitude exceeding a certain threshold, typically 10−4 times the peak value. To minimize end
effects, it is recommended that the mesh be three times as long, adding one source length upstream and one
downstream of the source region. The grid resolution ∆ is based on the typical BEM criterion ∆ ≤ λ/8. For
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low frequencies, the wavelength may be too large for this criterion to resolve the cigar-shaped mesh. In that
case, a perimeter-based criterion should be used, e.g., ∆ ≤ 2πr0/10. In summary, a rough rule of thumb is

∆ = min

(
λ

8
,
πr0
5

)

)(0 xp

Xsource
Xsource

Based on 
|p0|>10-4 |p0|max

Xsource

∆

Figure 15. Wavepacket BEM surface.

E. Examples

We offer a few examples of scattering using the wavepacket model at static conditions and in forward flight.
The fast-multipole version of BEM was used, as implemented in the FastBEM software package (Advanced
CAE Research, LLC; see also Ref. 14). The examples that follow demonstrate the methodology developed
in this paper and do not seek to represent any realistic configurations. It should be noted that the same
wavepacket model is used at static and forward-flight conditions. This is not realistic as the wavepacket
parameters will change based on the parameterizations at these two conditions. The scarcity of available
and reliable jet noise data with forward flight, with sufficiently resolved polar directivity of the sound pressure
level spectrum, has not allowed rigorous implementation of the parameterization scheme of Section V with
forward flight.

The jet simulation is based on the recent work of Papamoschou.1 We consider a single-stream subsonic
jet with Mj = 0.9, Uj = 280 m/s, and Dj = 0.022 m. The Strouhal number is Sr = fDj/Uj = 0.5 The
pressure on the wavepacket surface r = r0 is

p0(x, ψ) = tanh(x/b1)
p1 [1− tanh(x/b2)

p2 ] eiαxeinψ

with α = 276 m−1 (corresponding to Uc/Uj = 0.52), b1/Dj = 1.45, b2/Dj = 2.60, p1 = 1.84, p2 = 2.84, and
n = 2. These values reflect the parameterization based on far-field autospectra at static conditions.1 The
scattering surface is a rectangular plate with span of 0.5 m, chord of 0.2 m, and thickness of 0.02 m. The
shield is located 0.05 m below the jet centerline. The peak of the radiating part of p0(x) is located 0.046 m
upstream of the trailing edge.

Figure 16 shows contour plots of the incident and total pressure fields for Sr = 0.5 at M∞ = 0.0 and
0.50. The weakening of the incident field with forward flight is evident. For this particular wavepacket the
direction of peak emission at M∞ = 0.50 shifts to higher angle. Together with the overall compaction of the
radiating noise source, this increases the effectiveness of the shielding as seen in the contours of the total
pressure. The benefit of the forward flight effect on shielding is further evident in the plots of Fig. 17 which
show the polar directivity of the intensities of the incident and total pressure fields. Note that these results
are normalized so that the peak of the unshielded distribution is set at 0 dB. In the downward direction,
increasing the flight Mach number from 0 to 0.5 increases the effectiveness of the shield (in terms of reducing
the peak amplitude) from 3 dB to 12 dB. In the sideline direction, the corresponding attenuation increases
from 1 dB to 5 dB.

The results of Figs. 16 and 17 indicate that, for the same wavepacket source, the mean flow is expected
to have a beneficial effect on shielding. Not factored in these predictions is the physical change of the noise
source with increasing forward velocity. For a jet issuing from a regular nozzle, the noise source region will
elongate with increasing Mach number, thus counteracting the source compaction trend. The elongation of
the noise source region could possibly be inferred from the parameterization scheme of Section V, however

19 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

im
itr

i P
ap

am
os

ch
ou

 o
n 

Ja
nu

ar
y 

15
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
32

6 



 x (m)

y 
(m

)

jns001s05m00 - INCIDENT  

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0

5

10

15

20

25

30

35

40

 x (m)

y 
(m

)

jns001s05m00 - TOTAL  

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0

5

10

15

20

25

30

35

40

 x (m)

y 
(m

)

jns001s05m50 - TOTAL  

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0

5

10

15

20

25

30

35

40

 x (m)

y 
(m

)

jns001s05m50 - INCIDENT  

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0

5

10

15

20

25

30

35

40

M�=0.00

M�=0.50

INCIDENT TOTAL

Figure 16. Intensities on symmetry plane of incident and total pressure fields (dB) for wavepacket diffraction
of from a rectangular-plate shield at Strouhal number Sr = 0.5. Shield cross section is indicated by the while
dots.

this hypothesis was not tested due to the aforementioned lack of experimental data. On the other hand, a jet
issuing from a nozzle with aggressive mixing devices, such as deep-penetrating chevrons, may not experience
significant elongation of the noise source region with forward flight. For practical aircraft configurations,
aggressive nozzle devices are essential for achieving significant jet noise shielding.15

VII. Conclusion

The paper presented a methodology for treating the emission and diffraction of elementary jet noise
sources in the presence of a uniform subsonic mean flow. The analysis included wavepacket and point sources.
The governing equations were reduced to the canonical wave equation through established transformations
in the dependent variable and the axial coordinate. The impact of the transformations on the emission of the
isolated sources was elucidated, with attention on the distinction between sources of pressure and sources of
volume.

For a monopole source, the uniform flow significantly complicates the pressure field with different near-
and far-field scaling laws and with upstream amplification. The impact of the transformations on the
wavepacket emission is two-fold: shifting of the range of radiating wavenumbers and, for large Mach numbers,
elongation of the wavepacket envelope in the transformed domain. Both effects reduce the radiation efficiency
of the wavepacket source and compact the extent of the radiating noise source region.

The boundary element method was applied in the transformed domain to compute the scattered field from
a solid object, in this case a thin flat plate. The pressure field in the physical domain was obtained by reversing
the transformations. Because of the aforementioned compaction of the noise source, the effectiveness of the
shielding increased with increasing Mach number of the uniform flow.
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