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This paper will show that the matrix of all noise spectra radiated from a jet
in a stationary condition, axisymmetric in construction and boundary conditions,
has a special invariant structure which simpli�es measurements and enables the
total composite noise �eld to be expressed as a sum of mutually incoherent partial
�elds. Each such partial �eld is described in terms of an azimuthal mode with a
integer wave number and polarity. The consequences of this structure include a
simple explanation of the nature of azimuthal coherence and a practical procedure
for estimating the dominant partial �elds of the jet from measurements with a
limited azimuthal coverage. It should be noted that the conclusions are only drawn
from the assumptions of stationarity and axisymmetry, such that both large and
�ne scale mixing noise and broadband shock associated noise are covered by this
theory. This paper also introduces a concept of sound 
ares as a model for how
random 
uid dynamic events in a turbulent 
ow superpose stochastically to produce
measured spectra and crossspectra in the linear hydrodynamic and acoustic �elds.
This concept may be applied to model both axisymmetric as well as noncircular
nozzles.

Nomenclature

�GPP Improved spectral estimator
�(f�1; r1; x1g; f�2; r2; x2g) General crossspectral function

2(�1; �2) Coherence between angles �1 and �2

Am(r) Azimuthal mode coe�cient
P Helical spectrum
Z The set of integers
! Generic frequency variable
� Azimuthal coordinate
�m Amplitude of partial �eld m from eigenanalysis of autospectral matrix
~GPP Generic spectral estimator
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~p(t) Complex vector time history of pressures in azimuthal coordinates
~pm(t) Complex scalar time history of azimuthal wave number m
D Diameter of jet nozzle
E() The expectation operator
gn(r1; x1; r2; x2) Fourier coe�cient of axisymmetric crossspectral function
gnm(r1; x1; r2; x2) Fourier coe�cient of general crossspectral function
GPP Autospectral matrix of pressure measurements

H
(1)
n (r) Hankel function of the �rst kind1

h
(1)
n (r) Spherical Hankel function of the �rst kind1

hA(�) Azimuthal probability density function
hX(�) Axial probability density function
k Acoustic wavenumber
kc Convective wavenumber
kr Radial wavenumber
kx Axial wavenumber
L Axial extent of wave packet
N Number of microphones in ring
p(�; r; x) Random pressure function at location (�; r; x)
P (t) Vector time history of pressures at the microphone locations
Pn(r; x) Random pressure function associated with azimuthal mode n
Pmn (cos �) Associated Legendre function1

Q Simple permutation matrix
R Radius of measurement circle
r Radial coordinate
Vm Partial �eld corresponding to the amplitude �m
W Matrix of azimuthal mode shapes
Wm Azimuthal mode shape of wave number m
x Axial distance along jet centerline
LES Large Eddy Simulations
NAH Near�eld Acoustic Holography
POD Proper Orthogonal Decomposition, also known as partial �eld decomposition

I. Introduction

The two major sources of jet engine exhaust noise are turbulent mixing noise and shock-
associated noise. In addition, internal engine noise is likely to radiate, but at a lower level. The
dominant turbulent mixing noise is generated by large-scale turbulent structures. For high-speed
jets typical of military engines, these structures convect supersonically with respect to the ambi-
ent speed of sound, and generate highly directed Mach wave or instability wave radiation in the
downstream direction. The actual peak noise angle is determined by the convection velocity of the
turbulence. Broadband shock-associated noise (BBSAN) is generated by the interaction between
the turbulence in the jet shear layer and the jets shock cell structure. Because of the simple geo-
metric design of military aircraft engine exhaust nozzles, shock cells are always present in the jet
plume. Broadband shock-associated noise dominates the noise radiation in the forward arc.

Large turbulence structures in jets are a form of Kelvin-Helmholtz shear layer instability that
arise in the presence of a mean-velocity pro�le that is in
ectional.2 The connection between the
radiated noise of high-speed jets and this instability has been described by a number of authors
(3,4, 5). The stochastic instability wave model is in essence statistically equivalent to the large tur-
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bulence structures in the jet, and may be described approximately by the physics of a supersonically
convecting wavy wall with the same wavelength and wave speed.6 This model accurately predicts
the direction of the most intense noise radiation, and the Strouhal number of the most ampli�ed
instability wave is found to match the Strouhal number at the peak of the radiated noise spectrum.
Stochastic noise propagation models must account for the rapid growth and more gradual decay of
the amplitude of the wavy wall-like instability waves. Such amplitude-modulated wavepackets have
been described mathematically by numerous works (7,8, 9, 10). The wavepacket function has been
used successfully to parameterize the source of high-speed jets and the resulting source model has
been used for computing the scattering of sound from those jets around aircraft surfaces using the
boundary element method.11 An alternative approach to the modeling of wavepackets is to perform
the eigen-decomposition of the auto-spectral matrix and present the weighted eigenvectors as par-
tial �elds, or principal components. Partial �elds may be used directly as quantitative expressions
of the traveling wavepackets or may be used to �t physics-based reduced order models.12,13,14

Organized turbulence structures have been detected at model-scale by a number of researchers
(15,16,17) using near-�eld measurement arrays in the linear hydrodynamic regime. The detection
technique involves �tting the eigenfunctions of the instability wave model to measured data in the
jet near-�eld. An essential requirement of the data is knowledge of the space-time correlation in time
domain, or, equivalently, the cross-spectral matrix in frequency domain. Without an optimization
strategy, a full mapping of the auto-spectral matrix of a large number of sensor locations would
require an enormous number of microphones or extremely long acquisition times. This paper is
motivated by the practical need of an e�cient process to map out the essential cross-spectral
information that allows physical modeling of the noise source. At the same time, the methods
developed help our understanding of the fundamental physics of jet noise generation. The emphasis
here is on axisymmetric jets; however, it will be shown the tools developed are generic enough to
be applied to non-symmmetric jets.

In this paper we introduce the mathematics of azimuthal symmetry, and from there present the
applications. Measurements of jet noise using microphone arrays have been used in recent years
to attempt to understand the characteristics of the sources of jet noise. These measurements have
been made in both the near and far acoustic �elds of the jet. Processing of the measured data
can involve traditional beamforming, often coupled with a deconvolution algorithm, and Near�eld
Acoustic Holography. In the latter case the data can be projected to the the far �eld. Projection to
the far �eld can also be achieved by using the measured near �eld pressures coupled with a tailored
Green’s function based on the shape of the array.

A question that often arises in the design of the array is its azimuthal coverage. From a
practical point of view there is an advantage of limiting the coverage. Clearly, for a �xed number of
microphones, the resolution will be improved as the azimuthal coverage is reduced. There are also
situations where a full 360� coverage would be extremely di�cult. In the case of a full scale engine,
for example, it would be challenging, but not impossible, to have a near �eld array which encloses
the jet plume. It would be very helpful if the array only needed to cover a limited azimuthal extent.
However, can the azimuthal modal content of the near �eld pressure be determined? That is the
subject of the present paper.

� At most 180 degrees need be measured, a smaller sector will su�ce when the required number
of azimuthal modes is low. Section II.B.

� The POD (eigenvectors, singular vectors, partial �elds) structure of the spectral matrix shows
a complete algebraic and stochastic decoupling between the di�erent possible azimuthal wave
numbers. Sections II.A.2 and III.A.

{ The decoupling also allows for a de�nition of azimuthal wave packets that constitute a
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complete basis for the total noise sound �eld.

� Loss of azimuthal coherence must be due to the interaction of at least two strong azimuthal
modes. Section II.C.

� Smaller angular coverage allows a higher spatial density of instrumentation for the capture
of higher wave numbers.

� The angular origin invariance permits a more statistically e�cient estimation of autospectra
and crossspectra. Sections II.D and III.C

Organization of the paper

We will start the theoretical exposition of spectral function properties with a continuum section
that derives results which do not presuppose a grid of measurement locations, section II, followed
by a section that assumes a �nite grid of measurements, section III. Next, we have a section on a
sound 
are random pressure event noise model, section IV, and �nally examples from the theoretical
developments applied to data from model scale tests and LES experiments, section V.

II. Continuum analysis

This paper will specialize to the stationary behavior of a jet at a generic frequency !, which
will be dropped from the notation without any loss of understanding.

We shall consider an axisymmetric jet under stationary operation, with measurements taken on
a surface of revolution aligned with and centered on the axis of the jet. We shall use a cylindrical
coordinate system, f�; r; xg, where � is the azimuthal angle, r is the radial distance from the
centerline, and x is the axial distance along the centerline. The origin is taken at the jet exit, even
though this is arbitrary. The pressure perturbation p(�; r; x) measured at any point is a random
function of the spatial coordinates.

We shall restrict our measurements to the region of space where the pressure �eld satis�es the
Helmholtz equation, such that we exclude any nonlinearities, but include the linear part of the
hydrodynamic �eld.

II.A. The crossspectral function

This section �rst derives some basic properties for the crossspectral function for all jets, and then
adds the constraint of axisymmetry.

II.A.1. The general crossspectral function of the pressure for arbitrary jets

We de�ne the general crossspectral function between two points f�1; r1; x1g and f�2; r2; x2g as

�(f�1; r1; x1g; f�2; r2; x2g) = E(p(�1; r1; x1)p(�2; r2; x2)); (1)

where E is the expectation or averaging operator, and the overline denotes complex conjugation.
It also follows from equation (1) that

�(f�1; r1; x1g; f�2; r2; x2g) = �(f�2; r2; x2g; f�1; r1; x1g): (2)

Because of the nature of cylindrical coordinates, the crossspectral function is also periodic in the
two azimuthal coordinates, i.e.,

�(f�1 + 2m�; r1; x1g; f�2 + 2n�; r2; x2g) = �(f�1; r1; x1g; f�2; r2; x2g); for m;n 2 Z: (3)
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II.A.2. The crossspectral function for axisymmetric jets

We now specialize to an axisymmetric jet, and note that the origin of the azimuthal coordinate �
is arbitrary. It follows that for any arbitrary angle �o, the crossspectral function must be invariant
under the transformation �) �+ �o, i.e.,

�(f�1 + �o; r1; x1g; f�2 + �o; r2; x2g) = �(f�1; r1; x1g; f�2; r2; x2g): (4)

By choosing �o = ��1, equation (4) reduces to

�(f�1; r1; x1g; f�2; r2; x2g) = �(f0; r1; x1g; f�2 � �1; r2; x2g): (5)

Now, since the crossspectral function is periodic in the azimuthal coordinates, it follows that there
exists a Fourier series expansion in the second azimuthal argument, written as

�(f�1; r1; x1g; f�2; r2; x2g) =

1X
n=�1

gn(r1; x1; r2; x2) exp 2�in(�2 � �1); (6)

where gn(r1; x1; r2; x2) is a deterministic function.
Now we look at the random function p(�; r; x) and note that it is also periodic in the azimuthal

argument, p(�+ 2�; r; x) = p(�; r; x). It hence has a Fourier series expansion

p(�; r; x) =
1X

n=�1
Pn(r; x) exp 2�in�; (7)

with Pn(r; x) being a random function. We insert this Fourier series into the de�nition of the
crossspectral function, equation (1) and obtain

�(f�1; r1; x1g; f�2; r2; x2g) =
1X

n=�1

1X
m=�1

gnm(r1; x1; r2; x2) exp 2�i(n�2 �m�1); (8)

where gnm(r1; x1; r2; x2) = E(Pm(r1; x1)Pn(r2; x2). Comparing equations (6) and (8) for the ax-
isymmetric case, we can conclude that

gnm(r1; x1; r2; x2) = E(Pm(r1; x1)Pn(r2; x2)) = 0 for all m 6= n; (9)

which implies that the random �elds Pn(r; x) exp 2�in� are mutually stochastically incoherent.
We have thus shown that the random noise �eld generated by an axisymmetric jet can be written

as a sum of mutually incoherent sound �elds that are pure azimuthal modes in the azimuthal
coordinate, see equation (7). Note also that the azimuthal modes, with exception of mode zero,
have polarities, such that the azimuthal modes of positive polarities describe modes traveling in one
direction, the negative modes in the opposite direction. Furthermore, a slight rewrite of equation
(6)

�(f�1; r1; x1g; f�2; r2; x2g) =

1X
n=�1

exp (�2�in�1)gn(r1; x1; r2; x2) exp 2�in�2; (10)

shows that the partial �eld decomposition of the total sound �eld may be written as the sum of the
products of the azimuthal function exp (2�in�) with the eigenfunctions of the positive semide�nite
operator gn(r1; x1; r2; x2). When our data are measured with at �nite set of transducers locations,
this operator gn reduces to a positive semide�nite hermitian matrix.
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II.B. Recovery of the complete spectral function from measurements over a smaller
azimuthal sector

We shall furthermore specialize to two identical arrays of microphones located at azimuthal angles
�1 and �2 , such that the two will coincide when �1 = �2 .We can then write equation (6) as

�(�2 � �1; frg; fxg) =

1X
n=�1

gn(frg; fxg) exp 2�in(�2 � �1); (11)

since the radial and axial distances stay the same. This equation says that if we have measured
�(�; frg; fxg) in the interval [0;�] , we immediately know this function also for � 2 [��; 0].
Speci�cally, if � � � then the crossspectral function is known for the complete azimuthal span.

When the sector of measurements is smaller than �, we can still recover the entire spectral
spectral function, but as we shall see, subject to possible numerical ill conditioning. To this end,
multiply equation (11) by exp(im�) and integrateZ �

��
exp(im�)�(�; frg; fxg)d� =

NX
n=�N

gn(frg; fxg)
Z �

��
exp (i(n�m)�)d�; (12)

where we have limited the summation to a �nite sum of dominant azimuthal modes. The integral
on the right side of equation (12) has an analytical solution, transforming this equation to the formZ �

��
exp(im�)�(�; frg; fxg)d� =

NX
n=�N

gn(frg; fxg)2� sinc((m� n)�); (13)

with sinc(x) = sin(x)=x. If we let m vary from �N to N , equation (13) is a linear system
of equations for gn(frg; fxg) whose Toeplitz coe�cient matrix is invertible because of the linear
independence of the azimuthal functions fexp(im�)jm 2 [�N;N ]g over any �nite interval � 2
[��;�]. This is an important result of the present paper.
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Figure 1. log10 of condition number in matrix inversion for various sector sizes (degrees) and azimuthal mode
numbers.

While the coe�cient matrix of equation (13) is nonsingular, its numerical condition numbera

aDe�ned as the ratio of the largest singular value of the matrix to the smallest singular value
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will deteriorate with decreasing sector size � and an increasing number of included azimuthal modes
N . The base 10 logarithm of the condition number of a square matrix indicates the number of
decimal digits of precision needed to invert this matrix. The usual 64 bit double precision IEEE

oating point arithmetic used in contemporary computers provides approximately 16 decimal digits
of precision, so when the base 10 logarithm of the condition number approaches 16, the matrix
becomes too ill conditioned. In �gure 1 we show the digit demand for a range of sector angles (in
degrees) and highest azimuthal wave number. It can be seen that reasonable results are possible
for a smaller number of azimuthal modes, say N = 12 and sector size, say � = 60�.

Note that the main reason that we can recover the complete properties from observations on a
sector is that the azimuthal modes have a priori known global shapes around the full circle; only
the coe�cients need to be estimated.

II.C. On the nature of azimuthal coherence

In this section we restrict the analysis to coherences between points on a ring corresponding to a
constant radius and axial distance around an axisymmetric jet. Since the Fourier series of equation
(10) must converge, for practical purposes we can choose a positive integer N , such that the
crossspectral function for the ring may be written as

�(�2; �1) =
NX

n=�N
gn exp (in(�2 � �1)): (14)

The coherence is thus


2(�1; �2) =
�(�1; �2)�(�2; �1)

�(0; 0)2
; (15)

and it can be seen from equations (14) and (15) that a necessary and su�cient condition for the
coherence being unity is that there exists only one azimuthal wave number with nonzero amplitude.

II.D. E�cient spectral matrix estimation

Let us assume that we have made measurements with a microphone array that rotates with the
azimuthal coordinate as de�ned in section II.B and denote the sets of sampled random vectors
fpk(�1; frg; fxg)jk 2 [1;K]g and fpk(�2; frg; fxg)jk 2 [1;K]g. The usual estimate for the crossspec-
tral matrix function of equation (11) is then

G(�1; �2; frg; fxg) =
1

K

KX
k=1

pk(�1; frg; fxg)pk(�2; frg; fxg): (16)

Since G(�1; �2; frg; fxg) is a function of samples of the random vectors, in general

G(�1; �2; frg; fxg) 6= G(�1 + �o; �2 + �o; frg; fxg);

but it is trivially seen that

E(G(�1; �2; frg; fxg)) = �(�2 � �1; frg; fxg): (17)

We are thus led to an improved estimate of the crossspectral matrix function, which can be written
as

~G(�1; �2; frg; fxg) =
1

2�

Z �

��
G(�1 + �o; �2 + �o; frg; fxg)d�o; (18)
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whereby it is seen that

~G(�1; �2; frg; fxg) = ~G(0; �2 � �1; frg; fxg) and E( ~G(�1; �2; frg; fxg)) = �(�2 � �1; frg; fxg):
(19)

This estimate will then have a smaller variance error than the raw estimate of equation (11)
because of the averaging implicit in equation (18), and it will have the same location invariant
matrix structure as the theoretical spectral matrix. Since the integration presumes a continuous
scan in the azimuthal direction, we shall formulate a discrete data improved estimator in section
(III.C).

III. Finite Analysis

III.A. Azimuthal coordinates in axisymmetric jets

We will limit our treatment to sound pressure measurements at a ring of microphones, uniformly
spaced azimuthally such that the jet centerline is at the origin of the measurement ring, and that
the ring is perpendicular to the jet axis. The assumptions of axisymmetry, including swirl then
indicate that the spatial description of the sound �elds would be simpli�ed by using the complex
exponentials around the circle as the natural azimuthal coordinates.

III.B. Pressure time history in azimuthal coordinates

Let us assume that we have N microphones, and consider the N by N matrix of complex exponen-
tials

W =
1p
N

0BBBBBB@
1 : : : e2�i 0m

N : : :

1 : : : e2�i 1m
N : : :

: : : : : : : : : : : : : :

1 : : : e2�inm
N : : :

: : : : : : : : : : : : : :

1CCCCCCA : (20)

We see that column number m, starting from zero is a traveling wave with wave number m,
matched by a complex conjugate column, indexed by �m which represents a wave of the same
wavenumber, but traveling in the opposite direction. We de�ne the column number m as the vector
Wm and note that WN�m = Wm. We can easily see that the columns are mutually orthogonal, i.e.,
WH
n Wm = �nm. Also, we note that W is also the matrix form of the discrete Fourier transform of

N points. Let us now denote the column vector time history of the microphone recordings as P (t)
and expand it in terms of the azimuthal modes Wm as

P (t) =

N�1X
m=0

Wm~pm(t) = W

8>>>>>>><>>>>>>>:

~p0(t)

~p1(t)
...

~pm(t)
...

9>>>>>>>=>>>>>>>;
= W ~p(t): (21)

Because of the orthogonality of the azimuthal modes, equation (21) gives us a very simple formula
for calculating the azimuthal time histories

~p(t) = WHP (t): (22)

We have shown earlier that for axisymmetric jets with axisymmetric boundary conditions and
measurement locations, the composite sound �eld is a superposition of mutually incoherent pure
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azimuthal modes, and hence that the expansion given in equation (21) has decoupled the measured
vector time history into uncorrelated azimuthal time histories. We would then expect that the
crossspectra in azimuthal coordinates would be zero, and that the autospectra would be close to
the eigenvalues obtained by the conventional eigenvalue analysis of the autospectral matrix of the
measured time histories as outlined below. The mutual incoherence between azimuthal modes,
also between those with the same wave number but opposite polarity implies that even though the
mean circumferential partial velocities are zero for jets without swirl, the standard deviation of the
circumferential velocity can be large.

III.C. Improved axisymmetric estimator

Under the assumption of axisymmetry in the jet as well as in the instrumentation, the expected
value of the autospectral matrix is invariant under cyclic permutations of the channel numbers, since
we can start labeling the microphones from an arbitrary origin under the assumed instrumentation
symmetry. The mathematical expression of a simple cyclic permutation of order N is the matrix

Q =

0BBBBBB@
0 1 0 0 : : :

0 0 1 0 : : :

0 0 0 1 : : :

: : : : : : : : : : :

1 0 0 0 : : :

1CCCCCCA ; (23)

whereby it can be seen that

QN = I and Q

8>>>>>><>>>>>>:

1

2

3
...

N

9>>>>>>=>>>>>>;
=

8>>>>>><>>>>>>:

2

3

4
...

1

9>>>>>>=>>>>>>;
: (24)

Now, let ~GPP be any unbiased estimatorb of GPP , i.e., E( ~GPP ) = GPP . It then follows from
the assumption of axisymmetry and equation (24) that for any integer k, E(Qk ~GPPQ

�k) = GPP .
Hence, the estimator

�GPP =
1

N

N�1X
k=0

Qk ~GPPQ
�k (25)

is unbiased, and its standard deviation is less than that of ~GPP .

III.D. Partial �eld decomposition

When we are dealing with general geometries in jet nozzles and sensor placement, the usual way of
decoupling the composite sound �elds into coherent �elds that combine in a sum squared fashion,
is to perform an eigensolution of the autospectral matrix of the measurement channels. To each
eigenvalue �2

m, there corresponds an eigenvector Vm, normalized to unit magnitude, which we call
a partial �eld, such that we may express the autospectral matrix as

GPP (!) =
NX
m=1

�2
m(!)Vm(!)V H

m (!): (26)

bNote that an estimator is a random quantity, whereas the parameter to be estimated is deterministic.
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When the underlying jet and instrumentation are axisymmetric, we expect the partial �eld decom-
position to approximate the azimuthal coordinate decomposition, the advantage of the partial �eld
decomposition being that it is purely data driven. We shall investigate whether the partial �eld
and the azimuthal coordinate decomposition coincide for both axisymmetric model scale tests and
LES computations, see sections V.B.1 and V.C.1. Note that we have included the generic frequency
variable ! in this section, since we will be plotting the results of the analyses of the examples as a
function of frequency.

IV. Sound 
are model for turbulence mixing noise

Figure 2. Pressure contour plot
of 2D sound 
are with strong di-
rectivity.

The sound 
are model was inspired by a recent paper by Pa-
pamoschou10 where he constructed wave packets with desired az-
imuthal content by stochastically superposing the e�ects of reg-
ularly spaced localized azimuthal disturbances with a Gaussian
shape. A sound 
arec is the coherent sound �eld generated by
a single random 
uid dynamic event in a turbulent 
ow. The sta-
tionary incoherent superposition of an ensemble of such sound 
ares
will then generate the total sound �eld. Such a description enables
source models to describe auto- and crossspectra at any point on
the measurement surface as well as locations radiating to the far-
�eld. By de�nition, each coherent sound �eld results in a �xed
phase relationship between any two points in space. These partial
�elds allow for partial coherence when superposed incoherently, as
observed experimentally.

The motivation for the sound 
are model was to show that a simple and plausible statistical
model of 
uid dynamic instabilities could generate the spectral function of the acoustic �elds caused
by turbulent mixing noise. It was also developed to be able to study the e�ects of axisymmetric as
well as of general nozzles, and to understand the which of the transient instability properties are
captured by the measured spectral function.

For simplicity in presenting the concepts, the paper will concentrate on the 2D sound 
are
model where the sound pressures are independent of the axial coordinate.

IV.A. The 2D sound 
are model

We shall investigate sound 
ares in the azimuthal plane, invariant under translations in the axial
coordinate x. This implies that disturbances in the out of plane direction conduct supersonically
and have in�nite wavelength. A single coherent �eld is generated by specifying a complex pressure
distribution over the circumference of a circle with radius r0, and extending this pressure distribu-
tion to the in�nite cylinder along the jet axis. If we denote the pressure distribution on this surface
as p(�; r0; x), its helical spectrum is given by the equation

Pm(kx) =
1

2�

Z �

��
e�im�

Z 1
1

e�ikxxp(�; r0; x)dxd�; (27)

and the induced pressure �eld exterior to the cylinder is given by the equation

p(�; r; x) =
1

2�

1X
m=�1

eim�
Z 1
�1

eixkxPm(kx)
H

(1)
m (krr)

H
(1)
m (krr0)

dkx; (28)

cWe have chosen the term sound 
are because of the similarity to solar 
ares which arise randomly, both spatially
as well as temporally on the sun.
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where kr =
p

(k2 � k2
x) and H

(1)
m (krr) is the Hankel function of the �rst kind.1

Since the prescribed pressure on the cylinder is constant in the axial direction, equation (27)
for the helical spectrum reduces to

Pm =
1

2�

Z �

��
e�im�p(�; r0; 0)d�; (29)

and the induced pressure �eld in the azimuthal plane, equation (28), becomes

p(�; r) =
1

2�

1X
m=�1

eim�Pm
H

(1)
m (kr)

H
(1)
m (kr0)

=

1X
m=�1

eim�Am(r): (30)

Equation (30) states that the pressure distribution in the azimuthal plane is given as a sum of
azimuthal modes, whose coe�cients are given by

Am(r) =
1

2�

PmH(1)
m (kr)

H
(1)
m (kr0)

: (31)

We shown an example of a 2D sound 
are in �gure 3. The same sound �eld is shown as a
contour plot in �gure 2.

(a) Bode plot of complex pressure de�nition of sound 
are.
The swirl is indicated by the phase of the prescribed pres-
sure �eld p(�; r0; 0).

(b) Real part of complex sound �eld generated by sound

are computed by equation (30).

Figure 3. Sound 
are example with strong directivity and swirl

The generation of sound by stochastic processes (e.g., turbulence) is addressed next. The
coherent sound �eld created by the prescribed pressure distribution is allowed to occur randomly
at di�erent azimuthal origins � governed by a probability distribution hA(�) such that the its
cumulative distribution function is

pr(� � �) =

Z �

0
hA(�)d�; (32)

and the corresponding randomized sound pressure �eld is then

p(�� �; r) =
1X

m=�1
e2�im(���)Am(r): (33)

The cross-spectrum between any two points (�; r1) and (�; r2) is the integrated e�ect of all
these localized sound 
ares over all possible values of �, as given by equation (34). The measured
coherence no longer has to be unity between the two points.

�(f�; r1g; f�; r2g) =

Z 2�

0
hA(�)p(�� �; r1)p(� � �; r2)d�: (34)
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IV.A.1. An axisymmetric nozzle

We now specialize to an axisymmetric jet. The sound 
ares are now equally likely in any azimuthal
orientation, so the corresponding probability density function must be the uniform distribution,

hA(�) =
1

2�
: (35)

We insert equations (35) and (33) into equation (34), simplify and integrate to obtain

�(f�; r1g; f�; r2g) =
1

2�

1X
m=�1

1X
n=�1

An(r1)Am(r2)ei(n��m�)

Z 2�

0
ei(n�m)�d�

=
1X

n=�1
An(r1)An(r2)ein(���); (36)

since the integral is zero when m 6= n because of the orthogonality of the complex exponentials over
the unit circle. The expressions in equation (36) are found to be the summation of cross-spectra
of each azimuthal mode, which proves that the azimuthal modes are pure and incoherent with one
another. Thus for axisymmetric jets, partial �elds and pure azimuthal modes are one and the same.

(a) Log magnitude contours of total sound pressure for
uniform distribution of sound 
are.

(b) Surface plot of log magnitude of total sound pressure,
showing rapid near�eld decay (evanescence).

Figure 4. Resulting sum of squares total pressure for uniform sound 
are distribution

In the original sound 
are, equation (30), the azimuthal components summed up linearly, so
one can now observe the e�ects of the phasing between the components. When looking at the
complex sound �eld generated by randomizing around the 360�, the azimuthal components are now
mutually incoherent and add up in a sum-of-squares fashion such that the phasing that de�nes the
shape of the sound 
are is lost, see equation (36). Each azimuthal component is now a partial
�eld, and one can still recover the azimuthal component function up to an unknown phase angle.
This proves that if partial �elds are detected in a sector, they may also be described around the
complete circle. This also says that several distinct 
are patterns can generate identical complex
sound �elds; i.e., the coe�cient of each azimuthal mode is the same as the coe�cient in the sound

are.

Because the sound 
ares were randomized with uniform azimuthal distribution (i.e. they were
axisymmetric), the plot of log magnitude of total sound pressure created by randomized sound

aresresults in an axisymmetric directivity pattern as shown in �gures 4(a) and 4(b).

Figure 5(a) and �gure 5(b) present the azimuthal coherence between two sensors with azimuthal
spacing for the axisymmetric sound �eld. The plots are shown on a linear and a logarithmic ordi-
nate, respectively, and demonstrate that there is partial and rapidly diminishing azimuthal coher-
ence beyond a small angular spacing. Despite this short coherence length, the detected partial �elds
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have mode shapes that appear axisymmetric and global. For example, the real part of the leading
three shapes is pictured in �gure 5. The dominant mode in this example is clearly axisymmetric,
while the second and third modes contain components of swirl in opposite directions. For this
particular numerical example, the magnitudes of the singular values associated with each mode are
plotted in �gure 6 and indicate that beyond the axisymmetric mode that has the strongest mag-
nitude, pairs of singular values associated with equal and opposite senses of rotation (i.e., positive
and negative azimuthal modes) appear to characterize the sound �eld. This numerical model can
thus be made to be entirely consistent with model scale and LES experiments performed at PSU
that also give rise to such azimuthal mode pairing, as presented section V.B.1 and section V.C.1.

(a) Azimuthal coherence between any two sensors sepa-
rated by angle , at four di�erent radii.

(b) Same as �gure on left, with log scale on ordinate.

Figure 5. Azimuthal coherences for uniform probability distribution

Figure 6. Real part of detected partial �eld for the �rst three azimuthal modes that results from summing of
sound 
ares.

In summary, in this section a numerical experiment was presented that demonstrates that the
partial �elds needed to describe the sound �eld can be described by global modes which can be
detected by appropriately distributed sensors. Two important points are summarized below:

� One can stochastically sum sound 
are or pure azimuthal modes; either way leads to the
observations of same azimuthal coherences of short length.

� Even when the azimuthal coherence drops, the individual partial �elds possess a fairly uniform
amplitude as a function of azimuthal angle; hence, one can detect what is happening on the
other side of the plume from measurements in a sector on one side of the plume.
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Figure 7. Magnitudes of singular values of composite sound �eld show leading singular value (from �gure 6,
associated with axisymmetric mode) followed by paired values associated with positive and negative higher
aximuthal mode shapes.

� As long as only autospectra and crossspectra are being measured, it is not possible to ascertain
the detailed shape of the sound 
ares that generated this �eld.

IV.A.2. A square nozzle

Figure 8. Probability distribution function for square nozzle hA(�).

This section presents a study of a simulated asymmetric nozzle. A diamond nozzle is considered,
and a uniform probability density over the edges of a diamond surrounding the nozzle is used to
simulated the statistics generated by sound 
ares (in this case, the same sound 
are de�nition
as used in the previous subsection which includes a component of swirl). When the probability
density is plotted versus to the azimuthal angle as measured from the center of the jet, it generates
the distribution shown in �gure 8. A ring of sensors with an azimuthal spacing of one degree is
simulated by constructing the spectral matrix and solving for eigenvalues and eigenvectors (partial
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�elds). Each partial �eld is then propagated from the pressures at the circle of 1 m radius to
look at the near- and far-�eld behavior. Figure 9 presents a bar chart of the singular values or
eigenvalues of the �rst twenty resultant �elds, and �gure 10 presents the real part of the primary
partial �elds for the leading nine modes. From the color contours, it is clear that these partial
�elds are also global modes, such that one may detect the whole �eld by observing a suitably large
sector. Summing these eigenmodes by their respective weights results in the asymmetric sound
�eld shown in �gure 11(a) and �gure 11(b), which is characteristic of the diamond nozzle. It is to
be noted that the lack of mirror symmetry across the X and Y axes in the �gure results from the
small component of swirl associated with the original sound 
are.

Figure 9. Magnitudes of singular values of composite sound �eld of square nozzle simulation.

IV.A.3. Detection of Asymmetric Partial Fields with Reference Sensors and Continuous Scanning

This section shows through numerical experiments that asymmetric partial �elds with unusual direc-
tivity patterns can be reconstructed with an appropriate combination of reference and continuous-
scan sensors.12 An initial concept for sensor spacing is that it be fairly uniform according to the
wavenumbers present, with enough irregularity to break any symmetries (to maximize the statistical
information content).

The virtual instrumentation consists of a sector that is continuously scanned, giving a �ne
resolution of one degree, and a discrete set of reference sensors at the same radial distance but
regularly spaced on the complement of the continuously scanned sector. In order to simulate a
noise 
oor, random noise is added to the sound �eld 30 dB down from the highest amplitude
recorded at r = 1md. The coverage is judged on the �t of reconstruction to the underlying sound
�eld. The following two points will be shown in this simpli�ed 2-D example :

� A reasonably small continuously scanned sector will work from 50 Hz to 6000 Hz, with about
15 azimuthal reference microphones.

� Swirl and asymmetry present no problems.

For detection, an array radius of 3 m is selected over two sectors:

dThis is just an arbitrary normalization since a noise 
oor is constant while the pressure �elds decay away from
the source
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Figure 10. Real part of detected partial �eld for the �rst nine square nozzle modes that results from summing
of sound 
ares.
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(a) Log magnitude contours of total sound pressure for
square nozzle distribution of sound 
are.

(b) Surface plot of log magnitude of total sound pressure,
showing rapid near�eld decay (evanescence).

Figure 11. Resulting sum of squares total pressure for square nozzle sound 
are distribution
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(a) Logarithmic sound pressure distribution contours.
Squares indicate discrete microphone locations.
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(b) Original (truth) and reconstruction at r=3 m.

Figure 12. Sound 
are example at 50 Hz.

1. Continuous scan over [-30 30] degrees.

2. 15 evenly spaced reference microphones over [40 320] degrees.

The plots in �gures 12 - 14 demonstrate that a 60� continuous-scan sector with 15 evenly spaced
reference microphones are again able to reconstruct the underlying sound �eld to within the uncer-
tainty of the noise 
oore as can be seen in �gure 14(b). Below the noise 
oor the reconstruction will
be poor, but this is an inherent limitation of any such experiment. These numerical experiments
ultimately suggest is that asymmetry and sound �elds associated with swirl are in principle not a
problem for the array in this example.

While the examples shown here are for 2-D sound �elds, separation of variables will allow a
straightforward extension of these approaches to 3-D sound �elds provided that the reference sensors
contain resolution in the axial and azimuthal degrees of freedom. Without loss of generality, the
sensor arrangements shown in this section would also apply to irregularly spaced geometries and
scanning surfaces that were not perfect surfaces of revolution. The key requirement is that the
location of the proposed sensors is known to within a certain precision.

eThe noise 
oor becomes visible in the reconstruction at frequencies higher than 1500 Hz
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(a) Logarithmic sound pressure distribution contours.
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(b) Original (truth) and reconstruction at r=3 m.

Figure 13. Sound 
are example at 750 Hz.

IV.B. Foundations for a 3D sound 
are model

We propose to use a formulation based on pressure source densities along the jet axis, rather than
pressure distributions over cylinders.

A 3D sound 
are is pressure disturbance function p(�; r; x) in cylindrical coordinates generated
by a general line source which be written as

p(�; r; x) =

1X
m=�1

eim�
1X

n�jmj

Z L

0
cmn(l)Pmn (

x� lp
(x� l)2 + r2

)h(1)
n (k

p
(x� l)2 + r2)dl; (37)

where k is the acoustic wavenumber, Pmn (cos �) is the associated Legendre function1 and h
(1)
n (kr)

is the spherical Hankel function of the �rst kind.1

Using equation (37) de�ne the pressure �eld resulting from a point source at azimuthal angle
� and axial position l as

p(�� �; r; x; l) =

1X
m=�1

eim(���)
1X

n�jmj

cmn(l)Pmn (
x� lp

(x� l)2 + r2
)h(1)
n (k

p
(x� l)2 + r2): (38)

We want to view the parameters � and l as uncorrelated random variables, so we de�ne the az-
imuthal probability density function as hA(�) and the axial probability density function as hX(l).
This allows us to de�ne the crossspectrum between two points in 3D space analogously to equa-
tion (34) as

�(f�; r1; x1g; f�; r2; x2g) =

Z 1
0

hX(l)

Z 2�

0
hA(�)p(�� �; r1; x1; l)p(� � �; r2; x2; l)d�dl: (39)

A good choice for the axial probability density function could be the lognormal distribution
since it will allocate most of the radiative energy close to the nozzle with a fast decay toward
in�nity.

The formulation in terms of spherical Hankel functions gives directly the proper far�eld decay
from a compact and �nite sound source, 1=r, and there are no end e�ects and aliasing due to
the numerical Fourier transforms that are needed in the computations involving cylindrical Hankel
functions, see equation (28).
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(a) Logarithmic sound pressure distribution contours.
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(b) Original (truth) and reconstruction at r=3 m. Note
noise 
oor at lower response levels.

Figure 14. Sound 
are example at 6000 Hz.

V. Examples

In order to demonstrate the implementation of the analytical ideas in the previous sections they
will be applied to both experimental measurements and data from numerical simulations.

V.A. A simple numerical example of spectral function recovery from partial az-
imuthal coverage

(a) Coherence. (b) Crossspectrum phase and amplitude.

Figure 15. Numerical azimuthal example with g0 = g1 = g2 = 1.

For this simple numerical example, we restrict the analysis to crossspectra between points on a
ring corresponding to a constant radius and axial distance around an axisymmetric jet. Also, the
sound �eld will be assumed to be composed of the �rst four azimuthal wavenumbers, such that the
spectral matrix function may be specialized from equation (11) to the form

�(�2 � �1) =

3X
n=�3

gn exp (in(�2 � �1)); (40)
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Figure 16. Relative error in estimating azimuthal modes, assuming 4 signi�cant modes of both polarities, as
functions of measured sector size. The S/N values are identi�ed in the legend. Note that the relative error
axis is clipped at one, since relative errors larger than one signify meaningless results

and furthermore we set all the gn coe�cients to zero except for g0; g1 and g2, which receive unity
values. The resulting coherence is shown in �gure 15(a). Note that this sound �eld is the random
superposition of three azimuthal �elds with unit amplitude at any angle. This composite �eld also
has swirl, since only the positive polarity azimuthal modes have nonzero magnitude; examine the
phase of the crossspectrum on �gure 15(b).

Now, we form the and solve equation (13) in 64 bit IEEE 
oating point arithmetic for azimuthal
sector sizes � 2 [15� : : : 180�] with synthetic signal to noise ratios (S/N) from 20dB to 120dB. The
relative error in the solution for the azimuthal modes are plotted on a logarithmic scale in �gure 16.
The relative error is de�ned as the norm of the true solution of equation (13) divided into the norm
of the numerical minus the true solution.

V.B. A model scale axisymmetric supersonic jet

The experiments and simulations were conducted at Pennsylvania State University, see �gure 17.
A brief description of the experimental facility and measurements is given below.

The experiment was performed with axial positions of x=D = 1, 3 and 18. Only the x=D = 3
data are reported on here. The cold jets were run at Mach 1.5 and 1.7, with the latter data set
showing a well de�ned screech. The data were acquired from a Mach 1.5 axisymmetric jet with
an exit diameter of 0.5 inches and a microphone ring radius of 2.5 inches as shown in �gure 17(a).
The experiments presented in this paper were conducted in The Pennsylvania State University
high-speed jet noise facility shown in �gure 17(b). The jet noise anechoic chamber facility is a 5.02
x 6.04 x 2.79 m. room covered with �berglass wedges and with an approximate cut-on frequency
of 250 Hz.
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(a) Microphone ring and nozzle (b) Test �xture setup

Figure 17. Penn State model scale test.

V.B.1. The experimental model scale data at Mach 1.5

The spectral data for the model scale test was processed with both the general partial �eld eige-
nanalysis, as well as being expressed in analytic azimuthal coordinates. The improved spectral
matrix estimator described in section III.C was used. Figure 18 shows the plot of the amplitudes of
the partial �elds as a function of frequency in 18(a), and the autospectra of the azimuthal compo-
nents in 18(b). The two sets of results are virtually identical when subjected to a visual comparison.
We see clearly the presence of pairs azimuthal modes with opposite polarity, as well as the isolated
axisymmetric mode.

V.B.2. Experimental model scale overexpanded jet with screech at Mach 1.7, partial �elds and
azimuthal modes

Next we look at the model scale cold jet running at Mach 1.7 in an overexpanded condition which
results in screech tones. This can be seen in �gure 19 where the azimuthal autospectra are plotted.
Just as in the Mach 1.5 case (�gure 18), the geometry incognizant partial �eld decomposition is
virtually the same as the azimuthal coordinate decomposition, so we proceed to zoom into the
frequency range of the �rst screech to compare the azimuthal coordinates with the partial �elds.

The partial �eld plot around the screech, �gure 20, shows that the amplitudes of the individual
�elds do not cross. The eigensolution process extracts for each frequency the partial �elds of the
largest amplitudes �rst. Next inspect the plot of the azimuthal coordinates, �gure 21. We see
that as we approach the screech frequency from the lower frequencies that azimuthal modes �1
start dominating the axisymmetric mode and as we get closer, the azimuthal mode �1 becomes
dominant. This means that the pressure �eld is dominated by ovaling, and as we encounter the
screech frequency the ovaling precesses in the counterclockwise direction. Once past the screech
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(a) Partial �elds of the full autospectral matrix
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(b) Autospectra of all eight azimuthal coordinates

Figure 18. Lab test data : partial �eld amplitudes and the autospectra of the channels in azimuthal coordinates;
The partial �elds do not consider geometry, whereas the azimuthal modal coordinates do.

frequency, the +1 mode dominates, such that the precession has changed polarity. This shows that
swirl is possible also in an axisymmetric jet. For an extensive discussion of the physics of screech,
see e.g., Raman.18

V.B.3. Experimental model scale overexpanded jet with screech at Mach 1.7, partial azimuthal
coverage results

We now proceed to investigate the capabilites of a partial azimuthal coverage and restrict the data
set to �ve adjacent microphones, such that we only have measurements in an 180� sector. We use
the techniques from section II.B to recover the full spectral matrix, extract the partial �elds, and
plot their magnitude as a function of frequency in �gure 22. When compared with the azimuthal
coordinate plot from the 360� coverage in �gure 19 we note that the global features match very well,
but there seems to be fewer than 8 distinct function traces in the partial �elds from the reduced
coverage computations. We have ascertained that there is a rank loss in the matrix computations
since there are only �ve data streams and we want to estimate the eight dominant partial �elds.
The function traces for the pairs of � polarity modes tend to coincide, so we lose the indication
of precessing swirl at the screech frequency range. Otherwise the results are reasonable. From
a mathematical point of view, this problem could have been avoided if we had had at least 8
microphone channels in the 180� sector, but we lack the experimental data to corroborate this
claim at the present time.

V.B.4. Experimental model scale overexpanded jet with screech at Mach 1.7, incoherence of indi-
vidual azimuthal modes

We also show that the modes of the same wavenumber but opposite polarity are mutually incoherent
by calculating their cross spectrum and autospectra and from that the ordinary coherence, shown
in the two plots in �gure 23. This further con�rms the theoretical results from section II.A.2
that the azimuthal modes are mutually incoherent. A notable rise in coherence occurs at the two
screech frequencies. This paper o�ers no explanation, even though it most likely involves known
phenomena.18
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Figure 19. Autospectra of Mach 1.7 screeching jet at axial distance x=D = 3 in azimuthal coordinates. Note
screech tone around 8.7 KHz.
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Figure 20. Mach 1.7 with screech zoomed : partial �eld amplitudes. The partial �elds are organized by
amplitude only since geometry information is not utilized. Inspection of the partial �eld shapes is needed to
identify which azimuthal modes they represent.
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Figure 21. Mach 1.7 with screech zoomed : autospectra in azimuthal coordinates. Notice swirl precessing and
changing polarity as we cross the screech frequency.
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Figure 22. Mach 1.7 with screech : partial �eld amplitudes from 180� coverage, 5 microphones.
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(b) Coherence between azimuthal modes +1 and -1

Figure 23. Mach 1.7 with screech : The crosspectrum between azimuthal modes �1 is drastically down from
the autospectra. The coherence between the two is close to zero except for a coherence peak at the screech
frequency where the two modes change dominant roles in the precession of swirl.

V.B.5. Experimental model scale overexpanded jet with screech at Mach 1.7, insu�ciency of the
discrete cosine transform formulation in describing azimuthal coordinates

In a paper by Fuchs and Michalke,19 there is a description a procedure based on the discrete cosine
transform to extract the azimuthal modes from measured data. Their derivation explicitly dismiss
swirl as a phenomenon unlikely to be observed in axisymmetric jets unless it is superposed on the
jet at the nozzle. Under this assumption, the opposite polarity mode pairs will have the same
amplitude, and no mean circumferential bias would be expected. They proceed to develop this
procedure, whereby just the amplitude of the mode pairs is estimated.

The present experiment represents a data set with swirl happening around a screech condition,
section V.B.2, where this procedure will fail. Also, since we have shown that two modes of opposite
polarity are stochastically independent, section V.B.4, the standard deviation of circumferential
particle velocity will be non zero even when the mode pairs have identical amplitudes. We conclude
that the discrete cosine transform procedure is de�cient in characterizing the azimuthal modes of
an axisymmetric jet lacking bilateral symmetry of its mean 
uid motion.

V.C. LES experiment

A series of LES simulations of a supersonic fully expanded jet at 1.5 Mach have been conducted,
a cut-plane image of which is shown in �gure 24. The details of the numerical approach have
been described by Morris and Du20.21 The approach uses a multiblock structured mesh with
both matching and non-matching interfaces. Spatial discretization is performed with a 7 point
stencil, fourth-order accurate DRP scheme. Dual timestepping is used with both multigrid and
implicit residual smoothing to accelerate the convergence of the sub-iterations. The radiated noise
is predicted using solutions to the Ffowcs Williams and Hawkings equation22 and a permeable
acoustic data surface. The data used for the present analyses were taken from saved time histories
at the acoustic data surface, with virtual microphones placed with an azimuthal spacing of 3� at
various axial and radial locations.
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Figure 24. Instantaneous LES visualization of contours of X// of plume on a cutting plane through the jet
centerline.

Figure 25. Sample pressure spectra close to the shear layer.
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V.C.1. Comparison of azimuthal modes and partial �elds for LES data

The same two procedures were repeated for the LES data, and the results are presented in �gure 26.
Here visual inspection shows a tri
e more di�erences than in the lab test data, but much of this
may be blamed on the much shorter length of the data set for the LES experiment, leading to
higher statistical variability. Here we also see a trend for the data to organize itself into modal
pairs with opposite polarity.
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Figure 26. LES data : partial �eld amplitudes and the autospectra of the channels in azimuthal coordinates.

V.C.2. Azimuthal Coherence from LES Data
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(b) Azimuthal pressure correlations from LES data.

Figure 27. LES azimuthal coherence processing.

The azimuthal coherence of the near-pressure �eld is a central quantity of interest in the present
study. Experimental measurements of near-�eld azimuthal coherence at �ne resolution are rare, a
notable exception being that of Ukeiley and Ponton.23 Probe interference is an obvious obstacle
for such measurements, especially at very small scales. The advent of Large Eddy Simulation
(LES) o�ers an unprecedented opportunity to evaluate correlations at arbitrary locations in the

ow �eld, including two-point, space-time correlations that are critical for modeling jet noise. Here
we use recent LES data generated at Penn State University for a supersonic jet with Mach number
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Figure 28. Azimuthal coherence from LES data. a) x=D = 2; r=D = 1; b) x=D = 2; r=D = 2; c) x=D = 4; r=D = 1;
d) x=D = 4; r=D = 2.
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M = 1:47 and velocity U = 417 m/s. We compute azimuthal correlations at axial locations x=D = 2
and 4, and radial distances r=D = 1 and 2. The measurement locations are shown in �gure 27(a).

First we examine the correlation coe�cient versus azimuthal spacing ��. The plots of �g-
ure 27(b) show a rapid decline of the correlation with increasing azimuthal separation, followed by
a plateau at low correlation value. The uplift of the curves at x=D = 2 are a numerical consequence
of short record lengths inherent in the LES computation. Nevertheless, there is a remarkable simi-
larity between the LES correlations of �gure 27(b) and the experimental azimuthal correlations in
a transonic jet by Ukeiley and Ponton,23 at the same measurement locations. See also the paper by
Tinney and Jordan.24 With increasing x=D, the correlation curves becomes fuller (decline is less
steep) due to stronger low-frequency content coming from the large-scale turbulent structures.

Next we examine the coherence 
2 (equation 15) versus azimuthal separation. The coherence
was computed using the MSCOHERE function of Matlab with FFT size of 512. The coherence
results are presented as contour plots of 
2 versus Strouhal numberSr = fD=U and azimuthal
separation ��. To aid in the presentation of the plots, the coherence was smoothed moderately
versus frequency using a Savitzky-Golay �lter. It was ensured that the �ltering did not alter
the fundamental shape of the plot. Figure 28 presents the contour plots of azimuthal coherence
for all the measurement locations. At the upstream locations, x=D = 2, the coherence decays
monotonically with Strouhal number. Increasing the radial distance results in stronger coherence
at low Strouhal number, a trend that may be related to the spreading of a localized azimuthal
disturbance.10 For the downstream stations, x=D = 4, the coherence displays a maximum near
Sr = 0:2, the Strouhal number of peak noise emission from large-scale structures. Increase in radial
location again strengthens the coherence at low frequency. What is notable in all the results is how
weak the azimuthal coherence is at moderate and high frequencies. For example, at Sr = 2, the
coherence drops to 0.5 for �� � 5� at x=D = 2, and �� � 10� at x=D = 4. Similar trends of
sharply declining coherence with frequency are seen in the axial correlations of Tinney and Jordan24

in the near �eld of a coaxial jet.

VI. Conclusions

In this paper we have shown how the axisymmetry of a jet engine induces properties that have
important bene�ts for noise measurement procedures.

1. We have a complete decoupling of azimuthal and axial components in the POD modes of the
noise �eld.

2. The complete matrix of autospectra and cross-spectra may be reconstructed from acoustic
measurements in a regular over a reasonably small sector, less than 180 degrees.

3. The total acoustic �eld may be reconstructed by a sum of mutually incoherent azimuthal
wave packets, where the spectral measurements have been taken on an irregular grid in a
reasonably small azimuthal sector.

4. Since a smaller measurement sector su�ces for determination of spectral quantities and para-
metric noise �eld modeling, we have the option of either reducing instrumentation budgets,
or measure at a higher spatial resolution, which allows the analysis of higher frequency and
wavenumber ranges.

5. The sound 
are modeling shows that many features in the individual pressure disturbance
events are not re
ected in the measured crossspectral function, i.e., second order statistics give
a globalized, ensemble view of the stationary pressure �elds, such that higher order statistics
are needed to capture the transient nature of the origins of the jet noise.
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6. The �xturing of instrumentation for the measurement of full scale jets becomes simpli�ed,
since we may avoid having to straddle a nasty meandering plume.
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