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The paper presents a low-order prediction scheme for the noise change in multistream
jets when the nozzle geometry is altered from a known baseline. The essence of the
model is to predict the changes in acoustics due to the redistribution of the mean flow
as computed by a Reynolds-Averaged Navier Stokes (RANS) solver. A RANS-based
acoustic analogy framework is developed that addresses the noise in the polar direction
of peak emission and uses the Reynolds stress as a time-averaged representation of the
action of the coherent turbulent structures. The framework preserves the simplicity of
the Lighthill acoustic analogy, using the free-space Green’s function, while accounting for
azimuthal effects via special forms for the space-time correlation combined with source-
observer relations based on the Reynolds stress distribution in the jet plume. Results
are presented for three-stream jets with offset secondary and tertiary flows that reduce
noise in specific azimuthal directions. The model reproduces well the experimental noise
reduction trends. Principal mechanisms of noise reduction are elucidated.

1. Introduction

The exhaust of jet engines continues to be a significant contributor to aircraft noise.
The problem is particularly acute for medium-bypass ratio, high-performance turbofan
engines that are envisioned to power the next generation of supersonic transports.
Even for large-bypass ratio engines on commercial subsonic aircraft, jet noise remains
a problem and an active area of research. For fixed engine cycle, jet noise reduction is
achieved through some sort of modification of the exhaust nozzle. Such modifications have
included chevrons (Brown et al. 2011), fluidic injection (Henderson 2010; Powers et al.
2015), plasma excitation (Samimy et al. 2004) and offset-stream nozzles (Papamoschou &
Debiasi 2001; Papamoschou 2004; Henderson 2012; Papamoschou et al. 2014; Henderson
et al. 2015; Papamoschou et al. 2016; Huff & Henderson 2016), the last having motivated
the present study. These approaches have been subjected to numerous experimental and
computational investigations. Computational tools like large eddy simulation (LES) have
progressed to the point where they can provide high-fidelity, time-resolved solutions to
the flow field (Bridges & Wernet 2012). Combined with surface integral methods, these
computations yield far-field noise spectra that are becoming increasingly reliable (Brès
et al. 2017). However, the high computational cost, long turnaround times, and enormity
of data sets associated with LES-based approaches render them impractical for design
purposes. There is need for low-order tools that can provide rapid guidance to the designer
of exhaust systems regarding their potential to reduce noise. The robustness of such tools
hinges on capturing the salient physics of noise generation and noise reduction. Identifying
the salient physical processes of noise reduction is relevant not only to the development
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of rapid prediction tools but also to the interpretation of the vast data sets generated
by experiments and time-resolved computations. It is therefore the goal of this effort
to provide the framework of a physics-based methodology for the treatment of complex
nozzle configurations considered for advanced flight vehicles.

The predominant low-order modeling tool used today consists of an acoustic analogy
coupled with a Reynolds-Averaged Navier Stokes (RANS) solution of the flow field. The
original acoustic analogy formulation by Lighthill (1952) uses the free-space Green’s
function and can yield satisfactory results for round jets (Morris & Farassat 2002).
Improvements have included the effect of refraction by the mean flow, which requires
solving the linearized Euler equations (Morris & Boluriaan 2004; Goldstein & Leib
2008). Simplification is often sought through the locally parallel flow approximation,
in which case the Green’s function can be reduced to analytical forms. This approach
has yielded accurate predictions for jets from round nozzles as well as nozzles with
chevrons and fluidic injection (Depuru Mohan & Dowling 2016). For the chevron and
fluidic-injection jets, azimuthal effects on propagation were not considered, which is a
reasonable simplification given that the mean flow is mostly axisymmetric.

For asymmetric jets, inclusion of refraction effects becomes a much larger challenge.
Yet, it is critical to account for them in some fashion in order to capture the azimuthal
variation of noise emission and the noise suppression enabled by offset-stream concepts.
Even under the simplification of the parallel-flow approximation, the construction of the
Green’s functions involves complex numerical procedures (Leib 2014). The parallel-flow
approximation itself poses the risk of disregarding flow features that could play a critical
role in the generation or suppression of noise. Application to three-stream jets with offset
tertiary duct has shown initial promise (Henderson et al. 2015), although the asymmetry
in the modeled azimuthal directivity was weaker than the experimental one. There is no
question that the rigorous acoustic analogy approach that involves numerical solutions
for the Green’s functions is a direction that should be pursued and ultimately will yield
accurate results. However, the computational complexity and cost motivate the search
for a simpler option that will give the designer initial guidance in real time, once the
RANS solution is available.

The present effort therefore seeks the development of a practical, physics-based
methodology for predicting the changes in acoustics imparted by nozzle modifications,
with emphasis on techniques that induce asymmetry in the nozzle plume. The focus
is on predicting the change in peak noise, relative to a known reference jet, due to
the redistribution of the time-averaged flow field as computed by a Reynolds-Averaged
Navier Stokes (RANS) solver. It is widely agreed that the peak noise is generated
by coherent turbulent structures, so this will be a central element in the theoretical
development. The approach is influenced by the large body of work on acoustic analogy,
starting with Lighthill (1952) and including Harper-Bourne (1999), Morris & Farassat
(2002), and many others cited in following sections. The model maintains the simplicity
of the free-space Green’s function used in the original Lighthill acoustic analogy and
induces azimuthal directivity through a novel formulation of the space-time correlation
of the Lighthill stress tensor. Moreover, we avoid the complication of connecting the
volumetric source to a surface source in an attempt to induce azimuthal directivity, as
was done in a predecessor effort (Papamoschou & Rostamimonjezi 2012). The present
model is based solely on a volumetric source.
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2. Framework of the Approach

This section provides context for the analysis that follows. The concepts presented here
will have direct impacts on the development of the predictive model.

2.1. Representation of Coherent Structures

The focus of this work is on the peak jet noise, which is widely agreed to originate
from “large-scale” or “coherent” turbulent structures in the jet (McLaughlin et al. 1975;
Tam & Burton 1984). The RANS flow field, of course, is devoid of any time-resolved
information that one could connect to coherent structures. To bridge this gap, we look at
the main contributions of the large eddies: the transport of quantities such as momentum,
heat, species, etc., across the jet. Focusing on the momentum transport, in a statistical
sense the effect of turbulent eddies is captured by the velocity correlation u′u′, where
( ) denotes the ensemble average, or the associated Reynolds stress tensor −ρu′u′. The
coherent structures induce the largest contributions to the Reynold stress. The Reynolds
stress itself controls the production of turbulence, as expressed by the evolution equation
for the turbulent kinetic energy (Mathieu & Scott 2000)

Dk

Dt
= −u′u′ : ∇u − ǫ (2.1)

Here D/Dt means the total derivative associated with the mean flow, ∇u is the mean
velocity gradient, and ǫ is the dissipation. Even though this equation is written in a
simplified form for homogeneous turbulence, it nevertheless captures the essential premise
of the current work: the action of the turbulent eddies is best represented by the Reynolds
stress, not the turbulent kinetic energy. The turbulent kinetic energy k is an integral effect
of the production and dissipation terms in (2.1). It will be shown that there are significant
differences in the distributions of the Reynolds stress and turbulent kinetic energy in the
jet flow field, which have a direct impact on the modeling attempted here.
In summary, the Reynolds stress will be a central element of the modeling effort. It

will guide the appropriate definition of a convective Mach number, and will influence the
amplitude of the space-time correlation.

2.2. Suppressed Communication through the Jet Flow

A central assumption of the model is that the sound generated by coherent structures
in the direction of peak emission (shallow polar angles to the jet axis) radiates mostly
outward, with minimal radiation inward (through the jet flow). For a physical explana-
tion, consider first a single-stream jet. The convective velocity of the shear-layer eddies
has been measured by a number of studies to be in the range of 60% to 70% of the jet exit
velocity (Doty & McLaughlin 2005; Morris & Zaman 2010b). As a result, the convective
Mach number of the eddies relative to the ambient is larger than the convective Mach
number relative to the jet flow. For exhaust conditions typical for aeroengines, the outer
convective Mach number is high subsonic or supersonic, while the inner convective Mach
number is low subsonic. This means high radiation efficiency (a term that will be defined
in section 3.7) for outward propagation and very low radiation efficiency for inward
propagation. The sound that propagates inward and emerges from the opposite side of
the jet is very weak compared to the outward-propagated sound. This concept will be
generalized to a multistream jet in section 3.7.
The suppression of inward radiation is supported by measurements of the azimuthal

coherence of the jet pressure field. For separation angle of 180◦, and for frequencies
of relevance to aircraft noise (Strouhal numbers on the order of one or higher), the
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azimuthal coherence is zero (Viswanathan et al. 2011). If even a tiny fraction of the
eddy-generated sound “leaked” through the other side of the jet, a finite coherence would
be expected. In fact, the azimuthal coherence is very weak for much smaller separation
angles, indicating (a) the finite azimuthal scale of the eddies and (b) the suppression
of inward propagation. Finally, the suppression of inward propagation, and finiteness of
the azimuthal scales, are evident by a wealth of data on the sound emission of jets with
induced asymmetry (including data in this paper) which show azimuthal variations of up
to 15 decibels, a factor of 30 in pressure amplitude. Such large azimuthal changes would
not be possible if inward propagation were appreciable. The experimental evidence is not
limited to asymmetric jets. Jets from nozzle with inserts or lobes show distinct azimuthal
variations in the far-field sound (Powers et al. 2015).
The picture becomes murkier and more complex at large polar angle to the jet axis.

There, the outward radiation efficiency can be very weak, even at high convective Mach
number. So, the inner and outward propagation could be of competing strengths. Indeed,
experiments show that, at large polar angles, loud events on one side of the jet can increase
the sound emission on the opposite side. Until a better physical understanding of sound
refraction at large polar angle is developed, the arguments presented in the previous two
paragraphs can only be confidently applied in or near the direction of peak emission.
Consequently, the scope of the analysis that follows is confined to the peak radiated
sound.

2.3. Dominance of Outer Shear Layer

As a corollary to the notion of suppressed communication through the jet flow, we
argue that the sound generated by the coherent structures of the outermost shear layer
of the jet is not significantly effected by refraction effects. In past works refraction has
been approached from the standpoint of localized sources embedded in a mean flow (Mani
1976; Tam & Auriault 1998). This concept is questionable as far as outward radiation
from large-scale coherent structures is concerned. These coherent structures are in direct
contact with the irrotational ambient medium, so the sound generation involves a direct
coupling between the turbulent motion and the pressure field. Mean flow - acoustic
interactions are deemed negligible, except in polar directions close to the angle of growth
of the jet flow. We will further argue that, in multistream jets of relevance to aircraft
propulsion, the outermost shear layer is the strongest contributor to peak noise. This is
because, for velocity ratios typical of turbofan engines, the convective Mach numbers
of the inner shear layers are expected to be much lower than the convective Mach
number of the outer shear layer (Papamoschou 2004), and thus the inner shear layers
are expected to radiate sound at a reduced efficiency compared to the outer shear layer.
This point will be illustrated by the data of the present study and is further supported
by recent investigation of the pressure in the very near field of single- and dual-stream
jets (Papamoschou & Phong 2017).

3. Acoustic Analogy Model

3.1. Fundamental Solution

We review briefly the Lighthill acoustic analogy (Lighthill 1954), emphasizing features
that are salient to the present modeling effort. Referring to figure 1, the noise source
region occupies a volume V , locations y and y′ refer to points inside the source region,
and location x is a field point outside the source region. The distances between the field
point and the source locations are r = |x−y| and r′ = |x−y′|. Through a rearrangement
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Figure 1. Setup of the Lighthill acoustic analogy model.

of the Navier-Stokes equations, the pressure fluctuation p′ outside the source region can
be shown to satisfy the linear inhomogeneous wave equation

1

a2∞

∂2p′

∂t2
− ∂2p′

∂xi∂xi
=

∂2Tij
∂yi∂yj

(3.1)

where a∞ is the speed of sound of the uniform stationary medium surrounding the source
and Tij is the Lighthill stress tensor

Tij = ρuiuj + (p− a2∞ρ)δij − τij (3.2)

Here ρ is the density, p is the pressure, ui is the velocity vector, and τij denotes the
viscous stress tensor. The exact solution of (3.1) in 3D free space is

p′(x, t) =
∂2

∂xi∂xj

∫

V

Tij

(
y, t− r

a∞

)
1

4πr
d3y (3.3)

where 1/(4πr) represents the spatial distribution of the free-space Green’s function.
Applying the chain rule, and neglecting terms that decay faster than the inverse first
power of the distance, the double divergence is converted to a second time derivative,

p′(x, t) =
1

a2∞

∫

V

ϑiϑj
∂2Tij
∂t2

(
y, t− r

a∞

)
1

4πr
d3y (3.4)

where

ϑi =
xi − yi
r

(3.5)

is the direction cosine between observer and source. Even though the derivative trans-
formation in (3.4) is commonly associated with a far-field approximation, it is important
to note that (3.4) gives the acoustic pressure everywhere, that is, in the near field and in
the far field (Lighthill 1954; Harper-Bourne 2002, 2003). This is because the neglected
terms in the transformation decay faster than r−1 and thus comprise the hydrodynamic
pressure.

3.2. Spectral Density

Using (3.4) the autocorrelation of the pressure at observer location x0 is

p′(x0, t)p′(x0, t+ τ) =
1

16π2a4∞

∫

V

∫

V

[ϑiϑjϑ
′
kϑ

′
l]0

× ∂2Tij(y, t − r0/a∞)

∂t2
∂2Tkl(y′, t+ τ − r′0/a∞)

∂t2
1

r0r′0
d3y′d3y

(3.6)
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Figure 2. Coordinate systems.

Here ( ) denotes the expected value or ensemble average, r0 = |x0−y|, and r′0 = |x0−y′|.
We assume stationarity in time and define accordingly the space-time correlation of the
Lighthill stress tensor as

Rijkl(y,y
′, τ) = Tij(y, t)Tkl(y′, t+ τ) (3.7)

The stationarity allows us to take the time differentiation outside the correlation of
(3.6), writing it as ∂4/∂τ4( ) (Papoulis 1965). In addition, it enables the time shift
t− r0/a∞ → t. These steps result in

p′(x0, t)p′(x0, t+ τ) =
1

16π2a4∞

∫

V

∫

V

[ϑiϑjϑ
′
kϑ

′
l]0

× ∂4

∂τ4
Rijkl

(
y,y′, τ +

r0 − r′0
a∞

)
1

r0r′0
d3y′d3y

(3.8)

The spectral density is the Fourier transform of the autocorrelation,

S(x0, ω) =

∫ ∞

−∞

p′(x0, t)p′(x0, t+ τ) e−iωτdτ (3.9)

Inserting (3.8),

S(x0, ω) =
α4

16π2

∫

V

∫

V

∫ ∞

−∞

[ϑiϑjϑ
′
kϑ

′
l]0Rijkl(y,y

′, τ)
exp [iα(r0 − r′0)− iωτ ]

r0r′0
dτd3y′d3y

(3.10)
where α = ω/a∞ is the acoustic wavenumber. Equation (3.10) gives the acoustic com-
ponent of the spectral density everywhere. At this point the only assumption is the
stationarity in time of the flow statistics.

3.3. Coordinate System

The study of azimuthal effects necessitates the use of a cylindrical polar coordinate
system in the implementation of (3.10). The complexity of the problem requires the
inclusion of Cartesian and spherical coordinates. The three coordinate systems used here
are illustrated in figure 2: Cartesian (X,Y, Z); cylindrical polar (X, y, φ); and spherical
(R, θ, φ). The Cartesian coordinate system will also be described by indices 1 (X), 2
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(Y ), and 3 (Z), with the index 23 referring to combined properties on the cross-stream
(Y − Z) plane. Index 4 will refer to time.
Selection of an appropriate jet axis, on which the definitions of radial distance y and

azimuthal angle φ are based, is critical for capturing the azimuthal effects on noise
emission. In this regard, the nozzle axis is a poor choice because asymmetric jets have
distorted mean velocity profiles and could be vectored in directions off the nozzle axis.
In section 3.6 the Lighthill stress tensor will be connected to the Reynolds stress, whose
dominant component scales with the magnitude of the mean velocity gradient

G = |∇u| (3.11)

The decision then is to define the center of the jet as the point where the Reynolds
stress vanishes, or G = 0, within the jet flow. This definition is straightforward for the
region past the end of the primary potential core, where the profile of the mean flow is
Gaussian-like. There, the location of G = 0 coincides with the location of the maximum
mean velocity umax. For the region of the jet comprising the primary potential core,
the locations of G = 0 or umax are ill-defined. However, one can calculate fairly reliably
the centroid of the high-speed region defined by a criterion like u > 0.9umax. In fact,
this criterion can be extended to the region past the end of the primary potential core
where, for noisy experimental or numerical data, it provides a more reliable estimate of
the location of umax. Therefore, for a given axial station X = X1, we identify the region
of high-speed flow using the criterion

u(X1, Y, Z) > 0.9 umax(X1)

Considering a flow with symmetry about the X − Y plane, we denote Yi, i = 1, . . . , N ,
the Y locations at which this criterion is satisfied. Then, the jet centroid is computed
according to

Yc(X1) =
1

N

N∑

i=1

Yi (3.12)

Subsequently, the Y−coordinates of all the data points at this axial station are decre-
mented by Yc, so that Y = 0 becomes the centroid location. This process is applied to
all the axial stations within the computational domain.

3.4. Far Field Approximation

The far-field version of (3.10) is now developed, using the coordinate systems depicted
in figure 2. The source locations are described in cylindrical polar coordinates

y = (X, y, φ) , y′ = (X ′, y′, φ′)

In the spherical coordinate system, the observer is situated at

x0 = (R, θ0, φ0)

For R >> ℓ, where ℓ is a characteristic dimension of the source, ϑi ≈ ϑ′i ≈ xi/R and
1/(r0r

′
0) ≈ 1/R2. Further,

r0 − r′0 ≈ (X ′ −X) cos θ0 + sin θ0 [y
′ cos(φ′ − φ0)− y cos(φ− φ0)] (3.13)

Although the axial source separation X ′ −X readily appears on the right hand side, the
radial and azimuthal separations are interconnected and cannot be separated cleanly into
distinct terms. This is an important consequence of using the polar-cylindrical coordinate
system to express the source location; it will prevent the formulation of the spectral
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Figure 3. Illustration of the typical shape of the axial space-time correlation.

density as a four-dimensional Fourier transform of the space-time correlation, a common
procedure in past treatments of the acoustic analogy (Morris & Farassat 2002; Dowling
& Hynes 2004).
On defining the projection of Rijkl along the observer direction as

R0000(y,y
′, τ) = [ϑiϑj ϑkϑl]0 Rijkl(y,y

′, τ) (3.14)

the spectral density for the far-field observer becomes

S(x0, ω) =
α4

16π2R2

∫

V

∫ π

−π

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

R0000(y,y
′, τ)

× exp(iα cos θ0(X
′ −X)− iωτ)

× exp {iα sin θ0 [y
′ cos(φ′ − φ0)− y cos(φ− φ0)]} dτ dX ′ y′dy′ dφ′ d3y

(3.15)
In (3.15) the integrals over the shifted space and time coordinates are shown explicitly,
while the integration over the source volume V is displayed compactly. The spatial
coordinates in the exponent arise from the free-space Green’s function in the frequency
domain.

3.5. Model for the Space-Time Correlation

The space-time correlation model used here is defined in a fixed frame of reference.
It is guided by experimental measurements of space-time correlations in the flow or
near acoustic field of turbulent jets (Harper-Bourne 2003; Doty & McLaughlin 2005;
Morris & Zaman 2010b; Viswanathan et al. 2011), with important simplifications and
modifications. Figure 3 sketches the typical shape of the axial space-time correlation of
a fluctuating quantity (velocity, velocity squared, pressure, etc.) The evolution of the
timewise correlation R4 reflects the convection of turbulence with a velocity Uc and its
decorrelation with increasing axial separation |X ′ −X |. At zero spatial separation, R4 is
the autocorrelation and decays roughly exponentially with the time separation τ . With
increasing |X ′−X |, the timewise correlation peaks at τ = (X ′−X)/Uc and is modulated
by the axial correlation R1(X

′ −X); in addition, the shape of R4 broadens and becomes
more Gaussian-like. Negative loops are evident throughout the evolution of R4. For finite
axial separation, the space-time correlation is not symmetric around τ = 0, reflecting
the non-stationarity of spatial statistics and the associated increase of length and time
scales with downstream distance.
Having noted the principal features of the axial space-time correlation, we outline

the simplifications and modifications implemented here. The timewise and axial correla-
tions will be treated as symmetric functions, thus neglecting the effects of spatial non-
stationarity on their distributions. The timewise correlation R4 will have fixed shape
with axial separation and will include a transverse propagation time, in addition to the
axial propagation time noted above. In the transverse dimensions of the problem, we
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will employ a mixed correlation R23 whose precise form will be the subject of detailed
analysis. The resulting correlation has the form

Rijkl(y,y
′, τ) = Aijkl(y) R1

(X ′ −X

L1(y)

)
R23

(
y, y′, φ, φ′, L23(y)

)

×R4



τ − X ′ −X

Uc(y)
− d

Vc(y)

τ∗(y)




(3.16)

Here Aijkl is the amplitude of the correlation; R1 and R4 are the axial and timewise
correlations, respectively; R23 is a mixed radial/azimuthal correlation; L1 and L23 and
are the correlation length scales in the axial and transverse directions, respectively;
and τ∗ is the correlation time scale. The timewise correlation R4 includes axial and
transverse propagation times. The axial propagation time (X ′ −X)/Uc is connected to
the streamwise eddy convection at velocity Uc. The transverse propagation time d/Vc is
a special construct that will be shown to induce azimuthal directivity in the emission of
the sound. It is based on a transverse distance d and a transverse propagation velocity Vc.
The axial and transverse convective Mach numbers are Mc = Uc/a∞ and µc = Vc/a∞,
respectively. Equation (3.16) shows explicitly the dependence of the amplitude and
correlation scales on the source location y. This notation will be henceforth dropped
to reduce clutter.
The notion of a transverse propagation time scale can be found in the works of Harper-

Bourne (2003), Raizada & Morris (2006), and Miller (2014). In this study, the concept
should not be seen as anything more than a mathematical construct to induce azimuthal
influence, as will be demonstrated in the analysis of section 3.5.3. Nevertheless, it is
helpful to have some insight as to the physical meaning of Vc. Consider two points
separated laterally at the same axial location. If the turbulence is highly uncorrelated
spatially, so that the correlation scale is much smaller than the separation of the two
points, the speed at which a disturbance propagates from the first point to the second
point cannot exceed the local acoustic velocity. On the other hand, if the turbulence
convects downstream in highly organized patterns whose correlation scale is much larger
than the separation of the two points, then the lateral propagation speed depends on the
axial convective velocity and the shape of the “wavefronts”. If a given wavefront arrives
simultaneously at the two points, the lateral propagation speed is infinite. Experimental
measurements of the second-order radial cross correlation in subsonic jets by Morris
& Zaman (2010a) suggest a very fast, yet finite, lateral convection velocity. In the
uncorrelated case, a transverse convective Mach number on the order of 1 (µc ∼ 1)
represents an upper bound. In the strongly correlated case, µc can be as high as ∞ in
which case the transverse term drops out from the argument of R4.

3.5.1. Generic Shape for the Correlations

The correlation shapes employed here fall under the class of the “stretched exponential”

Rj(t) = e−|t|βj

, (3.17)

also called the Kohlrausch function (Wuttke 2012). The flexibility provided by this
function will be used in the axial (j = 1) and timewise (j = 4) dimensions, where
the range 0.7 6 βj 6 2 will be allowed. On the transverse plane (j = 23) only the integer
value β23 = 2 will be considered for the sake of numerical efficiency.
Since Rj is an even function, its Fourier transform is real and equal to twice the cosine
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Figure 4. Correlation function (a) and its Fourier transformation (b) for various values of β.

transform:

R̂j(η) = 2

∫ ∞

0

Rj(t) cos(ηt)dt (3.18)

Note that R̂j assumes the analytical forms

R̂j(η) =
2

1 + η2
, βj = 1

R̂j(η) =
√
πe−

1

4
η2 , βj = 2

For powers βj other than 1 (exponential) or 2 (Gaussian) the Fourier transform does not
have an analytical expression and needs to be calculated numerically. For computational
efficiency, the transform R̂j(η) was computed once and was tabulated versus η and βj ;
subsequent operations used two-dimensional interpolation of the table. Great care is
required in evaluating near βj = 2 where the shape of the Fourier transform is extremely
sensitive on 2− βj .
The stretched exponential will be used here with a reference scale, that is, Rj(t) =

exp(−|t/τ |βj ). Its Fourier transform is simply τR̂j(τη). Evaluated at η = 0, it gives the

integral scale τR̂j(0). It can be shown that

R̂j(0) =
1

βj
Γ

(
1

βj

)
(3.19)

where Γ is the Gamma function (Wuttke 2012). For 0.7 6 βj 6 2, the corresponding

range for R̂j(0) is 1.266 > R̂j(0) > 0.886. Thus, the integral scale is not too different
from the reference scale.
Figure 4 illustrates the behavior of the stretched exponential and its transform for

0.7 6 βj 6 2, the range allowed in this study. For clarity the transform is shown in
decibels. The sensitivity of the transform on the power β is apparent and represents a
key ingredient of the optimization process employed here. For the selected range of βj ,
the Fourier transform is non-negative for all frequencies.

3.5.2. Axial and Timewise Fourier Transforms

The timewise integration in (3.15) amounts to a Fourier transform in the time separa-
tion τ . Given the slow axial development of the flow, the X ′ integral can be approximated
as an integral over the axial separation X ′ −X ranging from −∞ to ∞, and thus can



Noise Modeling of Complex Jets 11

also be treated as a Fourier transform in X ′ − X . This assumes that the scale of the
axial correlation is much smaller than the distances X or X ′ and neglects the fact that
X and X ′ have a finite origin at zero. Fourier transforms in the transverse dimensions of
the problem are not feasible or appropriate. As indicated in the discussion of (3.13), the
radial and azimuthal components of the Green’s function cannot be expressed in terms of
separations y′−y and φ′−φ. Even if one were to overlook this fact, the concept of a Fourier
transform in the radial separation y′ − y breaks down because of the rapid evolution of
the flow in the radial direction: the radial correlation scale cannot be considered small
compared to either y′ or y. Similarly, the azimuthal correlation scale is not necessarily
small compared to 2π to attempt a Fourier transform in φ′.
We conclude that Fourier transformation is only possible in the timewise and axial

directions; the procedure is rigorous in the timewise dimension and acceptable as an
approximation in the axial dimension. Inserting the correlation form (3.16) in (3.15),
and carrying out the Fourier transforms in τ and X ′ −X , we obtain

S(x0, ω) =
α4

16π2R2

∫

V

A0000τ∗L1 R̂1

[
αL1

(
1

Mc
− cos θ0

)]
R̂4

[
ωτ∗

]
exp

(
−i αd

µc

)

×
∫ π

−π

∫ ∞

0

R23 exp {iα sin θ0 [y
′ cos(φ′ − φ0)− y cos(φ− φ0)]} y′dy′ dφ′ d3y

(3.20)
Omitting the arguments, we write this compactly as

S(x0, ω) =
α4

16π2R2

∫

V

A0000 τ∗L1πL
2
23 R̂1R̂4R̃23 d

3y (3.21)

where

R̃23 =
1

πL2
23

∫ π

−π

∫ ∞

0

R23(y, y
′, φ, φ′)

× exp

{
iα sin θ0

[
y′ cos(φ′ − φ0)− y cos(φ − φ0)

]
− iα

d

µc

}
y′dy′ dφ′

(3.22)

In (3.21) the term πL2
23 represents a cross-stream correlation area, and the product

τ∗L1πL
2
23 can be viewed as a four-dimensional correlation “volume”. As discussed in

section 3.5.1, the functions R̂1 and R̂4 are real and non-negative. The meaning and
behavior of R̃23 will be the topic of the discussion that follows.

3.5.3. Cross-Stream Correlation

As noted in section 3.5.2, the transverse correlation R23 is not amenable to Fourier
transforms. Instead, the spectral transformation of R23 takes the form of the integral of
(3.22). Evaluation of this integral, and determination of allowable forms for R23 and the
separation distance d, are governed by the requirement that the power spectral density
S(x0, ω), given by (3.21), be real and non-negative. To satisfy this requirement for an

arbitrary source distribution, R̃23 must be real and non-negative (recall that R̂1 and R̂4

are real and non-negative for the class of correlation functions selected here). A further
requirement is that R23 be periodic in the azimuthal separation φ′ − φ.
Equation (3.22) entails integration over the cross-stream plane. Its evaluation is facili-

tated by examining key geometric relations on this plane. Figure 5 depicts the projections
of source elements y and y′ and the resulting geometric relations on the cross-stream
plane, with the observer located at azimuthal angle φ0. All the distances discussed here
will be projected distances on the cross-stream plane. The distance between elements y
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Figure 6. Geometric relations in shifted coordinate system on the cross-stream plane.
Without loss of generality, the observer is placed at φ0 = 0.

and y′ is

s =
√
y′2 + y2 − 2yy′ cos(φ′ − φ) (3.23)

and the projection of this distance on the observer radial line is y′ cos(φ′−φ0)−y cos(φ−
φ0). This is precisely the term that appears in the exponent of (3.22). It thus becomes
evident that a coordinate system centered at the source location y, rather than at the
centroid, is preferred for evaluating (3.22). Accordingly, the origin is shifted from the
centroid to the location of source element y, as shown in figure 6. All the azimuthal
angles are now defined with respect to the observer angle φ0. The observer being in the
far field, the coordinate shift does not change the angular relations. In the new coordinate
system, the azimuthal angle of element y′ is ψ. The term y′ cos(φ′ − φ0)− y cos(φ− φ0)
reduces to s cosψ. Changing the integration variables from (y′, φ′) to (s, ψ) we obtain

R̃23 =
1

πL2
23

∫ π

−π

∫ ∞

0

R23e
iγs cosψ−iδd sds dψ

γ = α sin θ0

δ = α/µc

(3.24)

Although an exhaustive treatise of this integral is beyond the scope of the current work,
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a straightforward strategy for satisfying the requirement of real non-negativeness will be
set forth by invoking the integral representation of the Bessel function of the first kind
and of order zero:

2πJ0(x) =

∫ π

−π

eix cosψ dψ

First, if d is related to s through a projection of the type d = s cos(ψ − χ), where χ is
a reference angle, integration over ψ yields 2πJ0(ζs), where ζ is a real positive number.
Then, on selecting R23 = R23(s), the integral over s becomes the Hankel transform of
R23. Here the natural choice for d is

d = s cos(ψ − φ) = y′ cos(φ′ − φ)− y, (3.25)

that is, d is the projection of s on the radial φ. Integration over ψ results in a Bessel
function, and (3.24) becomes

R̃23 =
2

L2
23

∫ ∞

0

R23(s) J0

(
s
√
γ2 + δ2 − 2γδ cos(φ− φ0)

)
sds (3.26)

yielding the Hankel transform of R23(s). For computational efficiency, we seek forms
for R23(s) that result in analytical, non-negative solutions (see Appendix A for further
discussion.) Among several candidates, a Gaussian kernel satisfies these conditions and
yields a simple analytical solution (Bateman 1954). Accordingly, we select

R23(s) = exp

[
−
(

s

L23

)β23]
(3.27)

and restrict β23 = 2. Evaluation of the Hankel transform gives

R̃23 = exp

{
−
(
αL23

2

)2 [
sin2 θ0 +

1

µ2
c

− 2
sin θ0
µc

cos(φ − φ0)

]}
(3.28)

Therefore, we satisfy the requirement for a real non-negative spectral density. Note that
R23 is periodic with the azimuthal separation φ′ − φ, as is readily observed by inserting
(3.23) in (3.27). Importantly, the term cos(φ−φ0) in (3.28) induces an azimuthal influence
that simulates the effect of suppressed communication through the jet flow discussed in
section 2.2.

3.5.4. Azimuthal Influence

The azimuthal directivity of R̃23 arises from the term cos(φ − φ0) in (3.28) and is

directly controlled by the transverse convective Mach number µc. For µc = ∞, R̃23 does
not have an azimuthal variation. For µc finite and positive, the azimuthal influence has an
extent that is controlled by µc and by the transverse non-dimensional wave number αL23.
Figure 7 illustrates these dependencies for observer polar angle θ0 = 30◦. At fixed αL23,
the strongest azimuthal directivity is obtained for µc = 1/ sin θ0 (µc = 2 in this example).
At fixed µc, the directivity sharpens with increasing αL23 (increasing frequency). These
observations would tempt one to set µc = 1/ sin θ0 to maximize the azimuthal influence.
Of course, this is not a legitimate step because the correlation parameters should be
independent of observer location. The approach in this study is to set

µc =
1

sin θpeak
(3.29)

where θpeak is the angle of peak emission, in terms of the overall sound pressure level, for
the baseline axisymmetric jet. The combined influence of µc and L23 on the azimuthal
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Figure 7. Azimuthal distribution of R̃23 for observer polar angle θ0 = 30 deg. (a) Fixed αL23
and varying µc; (b) fixed µc and varying αL23.

influence places some constraints on the transverse correlation scale L23. Specifically, a
lower constraint should be placed on the coefficient that controls L23 such that, at given
frequency, αL23 is not too small. The present model for µc is selected for its simplicity.
More sophisticated models, where µc depends on flow conditions and frequency, may
provide higher levels of fidelity.

3.6. Amplitude of the Correlation

The amplitude Aijkl in (3.16) represents the correlation

Rijkl(y,y, 0) = Tij(y, t)Tkl(y, t) (3.30)

It is important to recall, however, that the source term in (3.8) is not Rijkl itself but
∂4Rijkl/∂τ

4. This means that only terms that depend on τ can contribute to Aijkl . It is
thus convenient to express Aijkl as

Aijkl(y) = [Tij ]a[Tkl]b, a→ b (3.31)

where a and b represent different times. Only correlations that involve both a and b are
to be retained.
We assume that the principal component of the Lighthill stress tensor is Tij = ρuiuj

and write the velocity components as

u1 = u+ u′

u2 = v′

u3 = w′

(3.32)

where u′, v′, w′ are the fluctuating velocity components in Cartesian coordinates. The
distinct Lighthill tensor components are

T11 = ρ(u2 + 2uu′ + u′u′)

T12 = ρ(uv′ + u′v′)

T13 = ρ(uw′ + u′w′)

T22 = ρv′v′

T23 = ρv′w′

T33 = ρw′w′

(3.33)

Following the rule accompanying (3.31), only cross-terms like u′av
′
b will be retained; terms
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like u′av
′
a do not contribute to the source. Under the assumption of isotropic turbulence,

the volume integral of the third-order correlations vanishes (Ribner 1969). Although the
validity of this assumption needs to be evaluated thoroughly, here we will neglect third-
order correlations like u′av

′2
b . The resulting evaluation of Aijkl leads to terms containing

second-order correlations u′iu
′
j , usually referred to as “shear noise”; and terms containing

fourth-order correlations u′iu
′
ju

′
ku

′
l, typically described as “self noise”. A preliminary

evaluation of the self-noise terms, using the quasi-normal hypothesis (Morris & Zaman
2010b) and the approximations that follow, indicates that their contribution to peak
noise is at least 10 dB below the contribution of the shear-noise terms. Therefore, the
fourth-order correlations are deemed irrelevant to the prediction of peak noise.
Thus, the problem boils down to modeling the second-order correlations, that is, the

components of the Reynolds stress tensor. To this end, we use the constitutive relation
that forms the foundation of turbulence modeling (Mathieu & Scott 2000)

u′iu
′
j =

2

3
kδij − νTSij (3.34)

where νT is the turbulent viscosity, δij is the Kronecker delta, and

Sij =
∂ui
∂xj

+
∂uj
∂xi

(3.35)

Given that the jet flow is slowly diverging, the dominant component of Sij is the
transverse gradient of the mean axial velocity. The approximate magnitude of this
gradient is

G =

√[
∂u

∂Y

]2
+

[
∂u

∂Z

]2
(3.36)

and its azimuthal direction is φg. Figure 8 describes the azimuthal relations between



16 D. Papamoschou

source and observer. The convention here is to assign an outward azimuthal direction
for an inward gradient, and vice-versa. For an axisymmetric jet with monotonically
declining radial velocity profile (that is, without a wake component), φg coincides with
the geometric azimuthal angle φ. For a jet whose velocity isocontours are not circular,
or that has a wake defect, φg and φ will generally be different.
It is now argued that the principal turbulent transport is in the direction of the mean

flow gradient with an associated turbulent velocity fluctuation q′. The corresponding
velocity correlation

g = < u′q′ > = νTG (3.37)

is deemed the dominant contributor to the momentum transport and hence to the
Reynolds stress. The transport normal to the direction of the mean flow gradient is
considered negligible. The correlation g will henceforth be loosely referred to as the
“Reynolds stress” and will be treated as non-negative. The direction of the mean flow
gradient, and its impact on the individual terms of the Reynolds stress tensor, will
be accounted for by the angle φg. Returning to the constitutive relation (3.34), using
v′ = −q′ cosφg and w′ = q′ sinφg, we are now able to make the following approximations:

u′u′ ≈ 2

3
k

v′v′ ≈ 2

3
k

w′w′ ≈ 2

3
k

u′v′ = − < u′q′ > cosφg ≈ −g cosφg
u′w′ = < u′q′ > sinφg ≈ g sinφg

v′w′ ≈ 0

(3.38)

It is recognized that in the actual jet the axial velocity fluctuations are stronger than the
transverse fluctuations, as measured by a variety of experiments (for example, Morris &
Zaman (2010b)). However, here it is preferred to stay faithful to the constitutive relation
(3.34).
Based on the convention of figure 2, the direction cosines for the far field observer are

ϑ1 = cos θ0

ϑ2 = − sin θ0 cosφ0

ϑ3 = sin θ0 sinφ0

(3.39)

Due to the symmetry of Tij and the resulting pairwise symmetry of Aijkl (that is,
Aijkl = Aklij), the 81 elements of Aijkl comprise single or multiple occurrences of 21
distinct terms. Of those, only 6 terms have the potential to contribute to shear noise; these
are the terms where the index 1 appears at least once in ij and at least once in kl. Table
1 lists the shear-noise terms, their multipliers (frequencies), their expressions according
to (3.33), their approximations according to (3.38), and their directivities according to
(3.39).
The total contribution in the direction of the far-field observer is

A0000

ρ2u2
=

8

3
k cos2 θ0 + 8g cos3 θ0 sin θ0 cos(φg − φ0) (3.40)

The second term on the right hand side arises from the 1112 and 1113 components of
the Lighthill stress tensor. In past works on axisymmetric jets, these components were
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Aijkl Mult.
Aijkl

ρ2u2

Aijkl

ρ2u2
Directivity ϑiϑjϑkϑl

(Expression) (Approximation)

A1111 1 4u′u′ 8

3
k cos4 θ0

A1112 4 2u′v′ −2g cosφg − cos3 θ0 sin θ0 cos φ0

A1113 4 2u′w′ 2g sinφg cos3 θ0 sin θ0 sinφ0

A1212 4 v′v′ 2

3
k 1

4
sin2(2θ0) cos

2 φ0

A1213 8 v′w′ 0 − 1

8
sin2(2θ0) sin(2φ0)

A1313 4 w′w′ 2

3
k 1

4
sin2(2θ0) sin

2 φ0

Table 1. Distinct shear-noise terms of Aijkl and associated directivities

neglected because they were thought to integrate to zero when inserted in the formula for
the spectral density (Ribner 1969). This is not the case if we accept that the space-time
correlation induces an azimuthal directivity along the lines of (3.28). Then, the second
term of (3.40) does not integrate to zero and makes a finite, positive contribution to
the spectral density. Of course, the components A1112 and A1113 must be retained for
asymmetric jets regardless of the chosen form of the space-time correlation.
The azimuthal dependencies contained in the cosine terms of (3.28) and (3.40) com-

plicate the evaluation of the spectral density (3.21) when the computational domain is
restricted to one of the symmetric halves of the jet flow. In addition, for axisymmetric jets,
it is desirable to cut down the expense of computing the spectral density by considering
only an azimuthal slice of the domain, a task also complicated by the cosine terms. These
issues are addressed in Appendix A.

3.7. Outer Surface of Peak Stress (OSPS)

In the expression for the spectral density (3.21), the effect of the axial convection of
the turbulent eddies is captured by the term

R̂1

[
αL1

(
1

Mc
− cos θ0

)]

We will call this term “radiation efficiency”, realizing that this term has been used in the
past under varying contexts. Here it means the efficiency with which a four-dimensional
correlation volume τ∗L1πL

2
23 radiates sound to the far field at fixed amplitude, frequency

and correlation functions. The radiation efficiency is controlled by the convective Mach
number Mc = Uc/a∞. We gain insight into the underlying physics by considering

special values of Mc. For a very low speed jet where Mc → 0, the argument of R̂1

becomes very large and thus R̂1 → 0. This is the limit of zero radiation efficiency. The
limit Mc = ∞ signifies disturbances being transmitted instantaneously throughout the
length of the object, like in the case of an oscillating solid cylinder. Then the radiation
efficiency becomes R̂1(−αL1 cos θ0) and the peak radiation occurs at θ0 = 90◦. In general,
the radiation efficiency peaks at cos θ0 = 1/Mc, where the argument of R1 is zero. For
Mc > 1, this represents the well-knownMach wave emission in high-speed jets that occurs
near θ0 = arccos(1/Mc). ForMc < 1 the radiation efficiency does not reach its peak value
and increases monotonically towards θ0 = 0. A physical constraint in applying the above
arguments is the spreading rate of the jet flow, which is around 10◦. Sound emission at



18 D. Papamoschou

observer angles close to the spreading angle is bound to be influenced by flow-acoustic
interactions.
The importance of the radiation efficiency term, coupled with the need to connect it to

sound generated by coherent structures, make the selection ofMc one of the most critical
decisions in the modeling. Here we argue that radiation efficiency is governed by the eddies
of the outermost shear layer of the jet. This follows the observation that just outside the
jet, in the near pressure field, the pressure distribution reflects the “footprint” of the
most energetic eddies, as confirmed by several studies of single-stream jets (Ho 1985;
Zaman 1986). For multistream jets, we pose an additional condition that these eddies be
in direct contact with the ambient fluid, a position supported by recent measurements
of the convective velocity in the near field of dual-stream jets (Papamoschou & Phong
2017). The noise radiated by the outer eddies involves a direct coupling between the
turbulent motion and the sound field; this does not involve mean flow/acoustic interaction
or propagation effects as long as the observer polar angle is not too close to the jet
spreading angle. In terms of the mean flow, and following the arguments presented in
section 2.1, the action of these eddies is represented by the peak Reynolds stress of the
outermost shear layer. Accordingly, we define the outer surface of peak stress (OSPS)
as the locus of the first peak of the Reynolds stress as one approaches the jet from the
ambient towards the jet axis. Denoting the radial location of the OSPS as yOSPS(X,φ),
and letting y = (X, y, φ) represent the location of a volume element in polar coordinates
(figure 2), the convective Mach number of that element is defined as

Mc(X, y, φ) =
u(X, yOSPS(X,φ), φ)

a∞
(3.41)

This means that all the volume elements at a particular X and φ are assigned the same
value of Mc as determined by (3.41).
Accurate detection of the OSPS requires very good resolution of the thin layers near

the nozzle exit. The near-field region affects the mid to high frequencies and is thus of
paramount importance to aircraft noise. The detection scheme is illustrated in figure 9.
The RANS flow field is divided into axial slices of very fine spacing near the nozzle exit
and coarser spacing downstream. Each axial slice is divided into fine azimuthal segments,
typically in 2.5-degree increments. Within each azimuthal segment, the data (velocity,
Reynolds stress) are sorted in order of the decreasing radius y. The search process for
the first (outermost) peak of the Reynolds stress starts at the radial location where the
mean axial velocity is one third of the tertiary exit velocity, a position that is well outside
the dividing streamline of the outermost shear layer but still within the jet flow. Starting
the search within the jet flow prevents spurious detection of peaks that may occur if one
started the search further out where the velocity is very low and the data can be noisy.
Denoting gj the discrete values of the Reynolds stress, the operation hj = max(gj , gj+1)
is carried out as we move inward towards the jet axis. We seek the first occurrence where
hj remains invariant for J consecutive points. This indicates that the first peak of the
Reynolds stress occurred at point j − J . The proper value of J will depend on the
resolution of the RANS data (population of each axial/azimuthal segment) and needs to
be determined carefully by the user. Examples of the OSPS will be shown figures 16 -
18.

3.8. RANS-Based Scales

The correlation length and time scales follow the traditional definitions, based on the
RANS flow field, used in past acoustic analogy models (Morris & Farassat 2002). They
are constructed from the turbulent kinetic energy k and the dissipation ǫ. The specific
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Figure 9. Detection scheme for the location of the outer peak of the Reynolds stress
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dissipation is defined as Ω = ǫ/k. The equation that follows describes the axial and
transverse length scales, and the time scale.

L1 = C1
k3/2

ǫ
= C1

k1/2

Ω

L23 = C23
k3/2

ǫ
= C23

k1/2

Ω

τ∗ = C4
k

ǫ
= C4

1

Ω

(3.42)

The turbulent viscosity νT in (3.34) is obtained from the usual dimensional construct

νT = cµ
k

Ω
(3.43)

The value cµ = 0.09 was use here.

4. Parameterization of the Space-Time Correlation

The preceding sections described the theoretical framework for calculating the far-field
spectral density as summarized in (3.21). The specific implementation of (3.21) requires
selection of the parameters that control the shapes of the correlation functions R1, R23,
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and R4 that comprise the space-time correlation of the Lighthill stress tensor given by
(3.16). Here we discuss the process by which these parameters are selected.

4.1. Source Parameters

The prediction of the far-field spectral density is dependent on a parameter vector
V = (V1, . . . , VK) that defines the correlation functions used in formulating the space-
time correlation in (3.16). Here the parameter vector comprises the scale coefficients
C1, C23, C4 in (3.42) and the exponent powers β1, β4 in (3.17). Recall that the exponent
power for the cross-stream correlation is fixed at β23 = 2.
We denote the parameter vector

V =
[
C1, C23, C4, β1, β4] (4.1)

The far-field power spectral density can then be expressed as

S(V, R, θ0, φ0, ω ) (4.2)

It is convenient to work with the Sound Pressure Level (SPL) spectrum, in units of
decibels. The modeled SPL spectrum is

SPLmod(V, R, θ0, φ0, ω) = 10 log10

[
S(V,R, θ0, φ0, ω)

Snorm

]
(4.3)

where Snorm = 4×10−10 Pa2 is the commonly used normalization value. The experimental
SPL spectrum is SPLexp(Rexp, θ0, φ0, ω) where Rexp is the microphone distance or the
distance at which the experimental spectrum is referenced to.

4.2. Determination of Parameter Vector

Determination of the parameter vector is based on knowledge of the spectral density of
the axisymmetric reference jet. Specifically, we seek a parameter vector that minimizes
the difference between the modeled and experimental SPL spectra for the reference jet:
SPLref

mod(V, R, θ0, ω) and SPLref
exp(Rexp, θ0, ω), respectively. We facilitate the optimization

by normalizing the experimental and modeled spectral densities by their respective
maximum values versus frequency. Equivalently, in units of decibels we subtract the
maximum values. The normalization removes the effect of the distances R and Rexp, so
the normalized spectra depend only on the parameter vector (for the modeled spectrum),
the observer polar angle, and the frequency. The normalized modeled and experimental
SPL spectra for the reference jet are:

SPL
ref

mod(V, θ0, ω) =SPLref
mod(V,R, θ0, ω)− SPLref

mod,max(V,R, θ0)

SPL
ref

exp(θ, ω) =SPLref
exp(Rexp, θ0, ω)− SPLref

exp,max(Rexp, θ0)
(4.4)

This normalization removes the amplitude as a variable, so we are concerned only with
matching the shape of the spectra.
We seek to minimize the difference between the modeled and experimental spectra at

observer polar angle θ0 and at a set of frequencies ωn, n = 1, . . . , N . We construct the
cost function

F (V) =

√√√√ 1

N

N∑

n=1

[
SPL

ref

mod(V, θ0, ωn)− SPL
ref

exp(θ0, ωn)
]2

+

K∑

k=1

Pk(Vk) (4.5)

The square root term represents the “error” between model and experiment in units of
decibels; Pk are appropriately defined penalty functions that constrain the parameters



Noise Modeling of Complex Jets 21

within reasonable ranges. The parameter vector V is determined by minimizing the cost
function. The minimization process of (4.5) utilized the Restarted Conjugate Gradient
method of Shanno & Phua (1976) (ACM TOM Algorithm 500). The minimization
typically used N=10 frequencies spaced at equal logarithmic intervals, covering the entire
relevant part of the spectrum. The scheme converged after about 30 function calls to an
error around 1.0 dB and zero penalty function.

4.3. Application to Non-Reference Jets

Upon a satisfactory match of the reference modeled and experimental spectra, the
parameter vector V becomes determined. This parameter vector is now applied to
the non-reference (typically asymmetric) jet, yielding SPLmod(V,R, θ0, φ0, ω). Direct
comparison with the SPL spectrum of the experimental non-reference jet is enabled by
the amplitude adjustment

SPLmod(V,Rexp, θ0, φ0, ω) = SPLmod(V,R, θ0, φ0, ω)+SPLref
exp,max−SPLref

mod,max (4.6)

5. Application Fields

So far we have described a methodology for the acoustic prediction of multistream
symmetric and asymmetric jets, and the parameterization of the problem based the far-
field sound of the baseline (symmetric) jet. Again, we are interested in predicting the noise
change from a known baseline. In this section we describe briefly the experimental and
computational data for the jets to which this methodology will be applied. An extensive
review of the experimental results is available in Papamoschou et al. (2016) and Phong
& Papamoschou (2017).

5.1. Experimental

5.1.1. Experimental Setup

The experiments utilized three-stream nozzles as part of UCI’s recent effort in char-
acterizing and suppressing noise from three-stream jets representative of the exhausts of
future supersonic aircraft. The nozzles comprised axisymmetric (reference) configurations
as well as asymmetric configurations that involved reshaping of the secondary and tertiary
ducts that surround the primary duct. The intent of the asymmetric nozzles was to
reduce noise directed downward, that is, towards airport communities. This report covers
two sets of nozzles, nominal-plug and enlarged-plug. The enlarged-plug nozzles were
motivated by sonic-boom compatibility, as explained in Phong & Papamoschou (2017).
Nozzle naming is consistent with that used in past reports for ease of reference. The
subscripts p, s, and t are used to denote the primary, secondary, and tertiary streams,
respectively. Key features of the nozzles are presented in figures 10 and 11 for the nominal-
and enlarged-plug sets, respectively, including the azimuthal distributions of the widths
of the annuli at the terminations of the secondary and tertiary ducts. All the nozzles share
the same exit areas. The effective (area-based) primary exit diameter is Dp,eff = 13.33
mm and the area ratios are As/Ap = 1.44 and At/Ap=1.06. The plug diameter and length
(the latter measured from the exit plane of the primary duct) are 6.08 mm and 18.26
mm, respectively, for the nominal-plug set; and 11.90 mm and 38.40 mm, respectively,
for the enlarged-plug set. Denoting the width of the tertiary annulus Wt, and noting
that Dp,eff provides a scale for the lateral extent of the strongest noise sources, we use
the ratio Wt/Dp,eff to describe the relative size of the tertiary stream. Similarly, for the
secondary stream we use the ratio Ws/Dp,eff, where Ws is the width of the secondary
annulus. The azimuthal angle φ is defined relative to the downward vertical direction.
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Figure 10. Three-stream nozzles with nominal plug. Left to right: perspective view,
cross-sectional view, and azimuthal distribution of the tertiary annulus width. Azimuthal angle
φ is defined relative to the downward vertical direction.

Considering first the set of nominal-plug designs (figure 10), variation of the nozzle
shape involved changing the exit shape of the tertiary duct only. Nozzle AXI03U is a
coaxial design, and is used as the reference nozzle for this set. The tertiary annulus
thickness is uniform with Wt/Dp,eff = 0.119. Nozzle ECC06U features a shaped offset
tertiary duct wherein the tertiary annulus becomes thicker over the azimuthal range
−110◦ 6 φ 6 110◦ and thinner outside this range. The ratio Wt/Dp,eff is constant at
0.155 over −60◦ 6 φ 6 60◦ and thins gradually to 0.05 near the top of the nozzle. The
tertiary outer wall is recessed at the top of the nozzle to prevent formation of a long thin
duct. Nozzle ECC08U retains the same features of ECC06U but adds a wedge deflector
at the top of the tertiary duct. The deflector dimensions are ℓ/Dp,eff =1.50 and δ = 25◦,
where ℓ is the deflector length and δ is the wedge half-angle. The deflector blocks an
azimuthal extent of 40◦ at the top of the nozzle, which allows thickening of the tertiary
annulus on the underside of the nozzle while preserving the cross-sectional area. The ratio
Wt/Dp,eff increases to 0.165 over −60◦ 6 φ 6 60◦. The tertiary exit diameters are Dt =
31.15 mm, 32.09 mm, and 32.19 mm for AXI03U, ECC06U, and ECC08U, respectively.
The slight variation in outer diameter is due to the reshaping of the tertiary duct while
maintaining constant area.
The investigation of the enlarged-plug nozzles (figure 11) included variations of the

shapes of the secondary and tertiary ducts. Nozzle AXI04U is a coaxial reference design,
with uniform distributions of the secondary and tertiary annuli atWs/Dp,eff = 0.219 and
Wt/Dp,eff = 0.127, respectively. Nozzle ECC12U features asymmetric distributions of
both the secondary and tertiary annuli. The overall design of the tertiary duct is similar
to that of ECC08U, with a wedge deflector having ℓ/Dp,eff = 1.20 and δ = 18◦. The
tertiary exit diameters are Dt = 38.10 mm and 40.60 mm for AXI04U and ECC12U,
respectively.
The nozzles were tested at cycle conditions that were representative of three-stream



Noise Modeling of Complex Jets 23

(a)

AXI04U

(b)

ECC12U
0.00

0.10

0.20

0.30

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

φ  (deg)

W
s
/D
p
,e
ff

AXI04U

ECC12U

0.00

0.05

0.10

0.15

0.20

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

φ  (deg)

W
t/
D
p
,e
ff

AXI04U

ECC12U

Figure 11. Three-stream nozzles with enlarged plug. Left to right: perspective view,
cross-sectional view, and azimuthal distributions of the widths of the secondary and tertiary
annuli. Azimuthal angle φ is defined relative to the downward vertical direction.

Quantity Primary Secondary Tertiary

U (m/s) 591 370 282

M 1.07 1.06 0.81

A/Ap 1.00 1.44 1.06

U/Up 1.00 0.63 0.48

Table 2. Cycle point for three-stream jets

turbofan engines operating at takeoff power. Table 2 lists the main flow conditions at the
nozzle exit. The Reynolds number of the primary stream, based on Dp,eff, was 280,000.
The exit velocities (U) and Mach numbers (M) were matched exactly using helium-air
mixture jets (Papamoschou 2006).
Noise measurements were conducted inside an anechoic chamber equipped with twenty

four 1/8-in. condenser microphones (Bruel & Kjaer, Model 4138) with frequency response
up to 120 kHz. Twelve microphones were mounted on a downward arm (azimuth angle
φ = 0◦) and twelve were installed on a sideline arm (φ = 60◦). On each arm, the polar
angle θ ranged approximately from 20◦ to 120◦ relative to the downstream jet axis, and
the distance to the nozzle exit Rexp ranges from 0.92 m to 1.23 m. This arrangement
enabled simultaneous measurement of the downward and sideline noise at all the polar
angles of interest. In selected cases, rotation of the nozzle enabled a richer coverage of
azimuthal angles. The microphones were connected, in groups of four, to six conditioning
amplifiers (Bruel & Kjaer, Model 2690-A-0S4). The 24 outputs of the amplifiers were
sampled simultaneously, at 250 kHz per channel, by three 8-channel multi-function data
acquisition boards (National Instruments PCI-6143) installed in a Dell Precision T7400
computer with a Xeon quad-core processor. National Instruments LabView software is
used to acquire the signals. The temperature and humidity inside the anechoic chamber
are recorded to enable computation of the atmospheric absorption. The microphone
signals were conditioned with a high-pass filter set at 300 Hz. Narrowband spectra were
computed using a 4096-point Fast Fourier Transform, yielding a frequency resolution of
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Figure 12. Narrowband far-field spectra at various polar angles θ for jets (a) ECC06U and (b)
ECC08U, with comparison to reference jet AXI03U (red); and (c) jet ECC12U with comparison
to reference jet AXI04U (red). Azimuthal direction φ = 0◦ (downward).

61 Hz. The spectra were corrected for microphone actuator response, microphone free
field response and atmospheric absorption, thus resulting in lossless spectra.

5.1.2. Acoustic Results

Figure 12 plots narrowband SPL spectra in the downward direction (φ0 = 0◦) for
jets ECC06U and ECC08U, with comparison to AXI03U; and for jet ECC12U, with
comparison to AXI04U. The spectra of the two reference coaxial jets, AXI03U (nominal
plug) and AXI04U (enlarged plug), are very similar, with AXI04U having a 1-2 dB benefit
at medium to high frequencies. This is partly attributed to source-observer shielding by
the enlarged plug (Bauer et al. 1982; Chase et al. 2013). Considering the nominal-plug
asymmetric jets, ECC06U offers reductions on the order of 10 dB at polar angles near
the angle of peak emission and in the medium to high frequency range. Addition of
the wedge deflector in nozzle ECC08U increases these reductions to ∼ 15 dB. For the
enlarged-plug asymmetric jet ECC12U, the combined asymmetry of the secondary and
tertiary streams increases the noise reduction to ∼ 17 dB. Change in noise emission in
the broadside direction (θ ≈ 90◦) is dependent on the aggressiveness of the asymmetry,
with jets ECC06U and ECC08U showing a slight increase, and jet ECC12U causing a
moderate increase. Spectra at different azimuthal angles will be presented later in the
discussion of the model predictions. Considering the sideline direction φ0 = 60◦, jets
ECC06U and ECC08U do not produce a significant benefit, while jet ECC12U provides
a distinct reduction at low frequency.
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5.2. Computational

5.2.1. Code and Grid

The computational fluid dynamics code used here is known as PARCAE (Papamoschou
et al. 2008) and solves the unsteady three dimensional Navier-Stokes equations on struc-
tured multiblock grids using a cell-centered finite-volume method. Information exchange
for flow computation on multiblock grids using multiple CPUs is implemented through
the MPI (Message Passing Interface) protocol. In its time-averaged implementation,
the code solves the RANS equations using the Jameson-Schmidt-Turkel dissipation
scheme (Jameson et al. 1981) and the Shear Stress Transport (SST) turbulence model of
citementer94. The SST model combines the advantages of the k−Ω and k− ǫ turbulence
models for both wall-bounded and free-stream flows.
The governing equations were solved explicitly in a coupled manner using five-stage

Runge-Kutta scheme toward steady state with local time stepping, residual smoothing,
and multigrid techniques for convergence acceleration. Only the steady-state solution
was considered because we are interested in the time-averaged features of the flow. The
computation encompassed both the internal nozzle flow as well as the external plume.
The computational domain extended to 38 tertiary nozzle diameters Dt downstream
and 8Dt radially. As all the configurations were symmetric about the meridian plane,
only one-half of the domain was modeled to save computational cost. The typical
grid contained 8 million points. The grid was divided into multiblocks to implement
parallelization on multiprocessor computers to reduce the convergence time. For the
primary, secondary, and tertiary duct flows, uniform total pressure was specified at the
inlet surface corresponding to the perfectly expanded exit Mach number. For the ambient
region surrounding the nozzle flow, a characteristic boundary condition was defined, and
the downstream static pressure was set equal to the ambient pressure. Adiabatic no-slip
boundary condition was specified on all nozzle walls.
The code has been used in past research on dual-stream symmmetric and asymmetric

jets, and its predictions have been validated against mean velocity measurements under
cold conditions (Xiong et al. 2010). Cold-flow comparisons for three-stream jets similar
to those discussed here have shown similar level of agreement. In addition to providing
information on the plume flow field, the code also predicts the aerodynamic performance
of the nozzles. Here the code was applied at the conditions shown in table 1 and the
experimental Reynolds numbers.
Using a filter based on the amplitude of the space-time correlation (3.40), compu-

tational elements with negligible impact on the spectral prediction were removed from
the domain prior to running the acoustic analogy algorithms. This cut down the total
number of elements to about two million, thus reducing significantly the computational
cost. Additional cost-saving measures are discussed in Appendix A.

5.2.2. Relevant Statistics

For conciseness, the presentation of the RANS solutions will focus on the nominal-
plug jets AXI03U, ECC06U and ECC08U. The trends delineated will apply broadly to
the enlarged-plug jets AXI04U and ECC12U, and distinctions will be pointed out in
section 5.2.3. The discussion starts with contour maps of the mean axial velocity on the
symmetry (X − Y ) plane, shown in figure 13. X = 0 signifies the location of the plug
tip. For the axisymmetric jet AXI03U, the high-speed region extends to about seven
tertiary diameters. The asymmetric delivery of the tertiary stream shortens moderately
the high speed region to x/Dt ≈ 6.5 for jet ECC06U and x/Dt ≈ 6.0 for jet ECC08U.
For the asymmetric jets, the thickening of the low speed flow on the underside of the jet
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Figure 13. Distribution of normalized mean axial velocity u/Up on the symmetry plane of
jets: (a) AXI03U; (b) ECC06U; and (c) ECC08U.

is evident. Some distortion of the high-speed region is also noticeable. The plug wake is
evident for all the jets.
Figure 14 plots the corresponding distributions of the normalized turbulent kinetic

energy k/U2
p . For jet AXI03U, in the vicinity of the nozzle exit we can distinguish clearly

the outer shear layer (between the tertiary stream and the ambient) and the weaker
inner shear layer (between the primary and secondary streams). The middle shear layer
(between the secondary and tertiary streams) is not apparent. We gain an understanding
of the relative strengths of the shear layers by considering that the turbulent kinetic
energy (or any component of the Reynolds stress) scales approximately as (∆U)2, where
∆U is the velocity difference across a particular shear layer. It is insightful to assess the
strengths in terms of the dimensionless ratio

rk =
(∆U)2

(Umax − U∞)2

where the denominator signifies the largest possible strength, with Umax the maximum
fully-expanded velocity (in this case, the primary exit velocity) and U∞ the ambient
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Figure 14. Distribution of normalized turbulent kinetic energy k/U2

p on the symmetry plane
of jets: (a) AXI03U; (b) ECC06U; and (c) ECC08U.

velocity (in this case, zero). From the values of table 2 we have rk = 0.139, 0.022, and 0.228
for the inner, middle, and outer shear layer, respectively. This dimensional argument helps
explain the dominance of the outer shear layer and the near-invisibility of the middle shear
layer. At approximately x/Dt = 2.5 the secondary and tertiary streams are completely
merged with primary shear layer. Now the primary eddies are in direct contact with the
ambient, resulting in a rapid increase in the turbulent kinetic energy which reaches its
maximum value near x/Dt = 5.5. Here the ratio rk is close to unity. The location of
peak turbulent kinetic energy is very close to the end of the primary potential core, as
delineated by the cone-like region of very low turbulent intensity. Further downstream,
the turbulent kinetic energy declines as the jet mean velocity drops. It is notable that at
large downstream distances the profile for the turbulent kinetic energy becomes Gaussian-
like.
For the asymmetric jets ECC06U and ECC08U the secondary and tertiary streams

extend much longer on the underside of the jet, reaching x/Dt = 4 for ECC06U and
x/Dt = 5 for ECC08U. Their elongation prevents the contact of the primary eddies with
the ambient until past the end of the primary core. As a result, the turbulent kinetic
energy on the underside of the jet is significantly reduced; this effect is most pronounced
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Figure 15. Distribution of normalized Reynolds stress g/U2

p on the symmetry plane of jets: (a)
AXI03U; (b) ECC06U; and (c) ECC08U. Compare with the distribution of the turbulent kinetic
energy in figure 14, particularly past x/Dt = 5.

for jet ECC08U. The primary potential core is moderately reduced to x/Dt = 5.2 for
ECC06U and x/Dt = 4.8 for ECC08U. All these trends bode well for noise reduction in
the downward direction. However, looking at the distributions of figures 14b and 14c one
has difficulty drawing a line distinguishing unambiguously the upper and lower sides of
the jet.

We turn our attention to the distribution of the normalized “Reynolds stress” g/U2
p ,

depicted in figure 15. The distribution of g near the nozzle exit is very similar to that of
k, so the same arguments apply there. However, further downstream we note a significant
difference between the g and k fields. The g field has a clear minimum in the interior
of the jet, which is practically zero once the wake region dissipates. The location of the
minimum coincides with the jet centroid defined by (3.12). Downstream of the end of the
potential core, the distribution of g has two lobes representing the turbulence production
near the edge of the jet. Compare with the Gaussian-like profile for k in figure 14. We
can clearly delineate the upper and lower sides of the jet, as demarcated by the location
of the minimum g. The lower side experiences dramatic reductions in g, particularly in
jet ECC08U. These results reinforce the view discussed in section 2.1 that the Reynolds
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Figure 16. Location of the outer surface of peak stress (OSPS) on the symmetry plane of jets
(a) AXI03U and (b) ECC08U. Contour map shows the Reynolds stress field g/U2

p . White dots
indicate the location of the outermost peak of g. Solid white line is the jet centroid as defined
by (3.12).

stress is the appropriate statistical quantity to represent the action of the turbulent
eddies.

5.2.3. OSPS

We now examine the geometry of the outer surface of peak stress. Figure 16 plots the
location of the OSPS on the symmetry plane of jets AXI03U and ECC08U. The plots of
the OSPS are overlaid on contour maps of the Reynolds stress g. For the axisymmetric
jet, the OSPS experiences a sudden convergence where the outer streams become totally
mixed with the primary shear later, near x/Dt = 2.5. This is followed by a gradual
convergence near the end of the primary potential core, downstream of which the OSPS
diverges slowly. For the asymmetric jet, the OSPS on the top side of the jet is similar
to that for the axisymmetric jet. On the bottom side, the OSPS slightly diverges in the
initial region of the jet, then suddenly shifts inward near x/Dt = 5, the location where
the outer streams are totally mixed with the primary stream. For the first five diameters
or so the OSPS on the bottom side is in a low velocity region of the jet, meaning that the
convective Mach number there is low subsonic. This has a large impact on the prediction
of noise emission from this region. Figure 16 also depicts the location of the centroid,
which is seen to coincide with the locus of minimum Reynolds stress.
We gain further insight by examining three-dimensional views of the OSPS, plotted in

figure 17. The distribution of the convective Mach number Mc is shown as contour levels
on the surfaces. The views cover the axial range −0.5 6 x/Dt 6 10. For jet AXI03U, the
transition of the OSPS from the tertiary to the secondary to the primary shear layer is
evident. The convective Mach number reaches the peak value of 1.20 shortly downstream
of the transition to the primary shear layer. For jets ECC06U and ECC08U we observe a
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progressively stronger reshaping of the OSPS, starting at the lateral sides and progressing
to the lower side. For jet ECC08U, on the underside of the OSPS, the convective Mach
number is as low as 0.35. This corresponds to the order of 100-fold reduction in radiation
efficiency in that region, as will be explained in section 7. On the upper half of the jet,
the shape of the OSPS and the Mc distributions are similar to those of the axisymmetric
case.

For completeness we also examine the OSPS of the enlarged-plug jets AXI04U and
ECC12U in figure 18. For jet AXI04U, the shape of the OSPS and Mc distribution on it
are similar to those of jet AXI03U. However, jet ECC12U shows a more distorted OSPS
relative to ECC06U or ECC08U, a result of the combined asymmetry of the secondary
and tertiary ducts. The secondary and tertiary flows are more evenly distributed on the
underside of the jet, which suggests that this jet may have better sideline noise reduction
than ECC06U or ECC08U.

It is also instructive to examine the distribution of Mc versus axial and azimuthal
directions, as is done in figure 19 for the nominal-plug jets. The largest reduction in
Mc occurs in the downward direction φ = 0. There the peak value of Mc reduces
from 1.2 for AXI03U to 1.0 for ECC06U to 0.8 for ECC08U. It is also noted that
the distribution of the peak becomes confined to only about one diameter for ECC08U,
versus three diameters for AXI03U. For ECC08U, the low-Mc region persists up to about
φ = 50◦, after which the distribution becomes similar to that of the axisymmetric jet. The
significant improvement in suppression of convective Mach number in jet ECC08U, versus
jet ECC06U, came from a rather subtle reshaping of the tertiary duct, as illustrated in
figure 10. This underscores the sensitivity of the offset-streammethod to the fine details of
the duct reshaping. The convective Mach number distribution for jet ECC12U, plotted in
figure 20, shows a large suppression ofMc extending up to φ = 40◦. It is evident that the
combined asymmetry of the secondary and tertiary streams results in a wider azimuthal
sector with low Mc.

The information presented in figures 17 to 20 constitutes important feedback one
obtains from the RANS solution before proceeding to the acoustic analogy step. Ex-
aminations of the OSPS and the associatedMc distribution provide strong clues whether
a particular nozzle arrangement will produce a quiet jet and in what azimuthal directions.
In the particular examples shown here, one can expect jet ECC08U to bring significant
noise benefit in the downward direction but probably little or no benefit in the sideline
direction, near φ0 = 60◦. On the other hand, jet ECC12U may be expected to provide a
strong downward reduction combined with a distinct, but not as large, sideline reduction.

6. Results

This study has introduced several new elements in the acoustic analogy modeling of
peak noise from high-speed turbulent jets including: a broader class of functions for
expressing the space-time correlation; definition of convective Mach number based on
the locus of peak Reynolds stress; and azimuthal directivity formulation based on a
transverse space-time correlation. This section discusses representative results of this
modeling effort, with application to the jets reviewed in section 5. All the results shown
are in the direction of peak emission θ0 = 35◦. The transverse convective Mach number
was selected to be µc = 1.52 consistently with (3.29).

In the discussion of the sound pressure level spectra, the frequency will be presented
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Figure 17. Outer surface of peak stress (OSPS) for jets (a) AXI03U, (b) ECC06U, and (c)
ECC08U. Contour levels show distribution of Mc on the OSPS.

in the non-dimensional (Strouhal number) form

Sr =
fDt

Up
=

ωDt

2πUp
(6.1)

This compound version of the Strouhal number tries to account for the overall diameter
of the jet, which is largely controlled by diameter of the tertiary duct, and the maximum
velocity of the flow.
Application of the conjugate gradient method outlined in section 4.2, with β23 = 2,

resulted in the parameter vectors, for the reference jets AXI03U and AXI04U, listed
in Table 3. The vectors for the two jets are similar, with AXI04U having moderately
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(a)

(b)

Figure 18. Outer surface of peak stress (OSPS) for jets (a) AXI04U and (b) ECC12U.
Contour levels show distribution of Mc on the OSPS.
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Figure 19. Axial-azimuthal distribution of convective Mach number Mc on the OSPS of jets
AXI03U (left), ECC06U (middle), and ECC08U (right).

higher scale coefficients. A sensitivity analysis indicated that all five of the parameters
are influential on the prediction of the modeled spectral density. Denoting∆SPL the root-
mean-square deviation of the modeled spectral density from a nominal distribution (using
a formulation similar to (4.5), but without the penalty component), the magnitudes of
the derivatives ∂∆SPL/∂Vk are on the order of 10 to 100, depending on the value of the
parameter vector V. The sensitivity on the powers β1 and β4 is typically very strong, as
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Figure 20. Axial-azimuthal distribution of convective Mach number Mc on the OSPS of jets
AXI04U (left) and ECC12U (right).

Parameter AXI03U AXI04U

C1 5.11 6.18

C23 3.89 4.13

C4 0.39 0.45

β1 1.73 1.98

β4 1.96 1.97

Table 3. Parameter vectors for the reference jets.
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Figure 21. Experimental and modeled spectra for jets AXI03U (red) and ECC06U (blue) at
polar angle θ0 = 35◦. (a)φ0 = 0◦; (b)φ0 = 60◦.

can be gleaned from figure 4, but the scale coefficients C1, C23, and C4 are impactful as
well.
Figure 21 plots the experimental and modeled spectra for jets AXI03U (reference) and

ECC06U at observer azimuthal angles φ0 = 0◦ (downward) and φ0 = 60◦ (sideline).
First we note the excellent match for the reference spectra; as mentioned in section 4.2,
the standard error is around 1.0 dB. In the downward direction, the model predicts the
noise reduction accurately up to Sr ≈ 2, with a small over-predicton at higher Strouhal
numbers. In the sideline direction, the model indicates marginal noise reduction, which
is in line with the experiment.
Similar information is displayed for jet ECC08U in figure 22. The acoustics of this jet

were surveyed at a larger set of azimuthal angles, ranging from φ0 = 0◦ (downward) to
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φ0 = 180◦ (upward). The larger downward noise reduction of jet ECC08U is captured
well by the model, as are the trends with increasing azimuthal angle. For φ0 > 60◦,
the experiment indicates moderate noise increase, which is generally reproduced by the
model. Jet ECC12U was likewise surveyed at a number of azimuthal angles. The spectra
plotted in figure 23 show that the model captures the principal noise trends, albeit with
some over-prediction of the noise reduction at low frequency. These trends include better
reduction at a larger downward sector (0◦ 6 φ0 6 60◦) and stronger excess noise in
the upward direction φ0 = 180◦. In particular, comparing figures 22c and 23c we note
that the model indicates that ECC12U provides better sideline reduction than ECC08U,
which is generally confirmed by the experiment.

The results of figures 22 and 23 can be summarized in the form of the change in overall
sound pressure level (OASPL) versus azimuthal angle. The OASPL was computed by
integrating versus frequency the modeled and experimental spectra. It is presented in
two forms, the unweighted version and the A-weighted version. The A-weighted version
accounts for the human perception of sound and is based on a scale factor of 40,
representing the typical engine size for a supersonic business jet. For the A-weighted
version, the SPL spectra were scaled up and “corrected” with the A-weight, using the
formula in the ANSI S1.43 standard (Rimmell et al. 2015). The plots of ∆OASPL are
shown in figures 24 and 25 for jets ECC08U and ECC12U, respectively. It is seen that
the model captures the azimuthal variation of the noise. For the unweighted OASPL,
the model over-predicts the reduction by about 2 dB in the downward direction. The
agreement is better for the A-weighted OASPL because it is strongly influenced by the
mid frequencies where the model generally performs well. Comparing figures 24b and 25b,
the model predicts the superiority of nozzle ECC12U in suppressing downward noise as
well as providing better sideline reduction.

One may inquire whether the coefficients listed in Table 3 result in physically mean-
ingful correlation scales. Direct comparison with past acoustic analogy efforts that
determined scale coefficients (e.g., Karabasov et al. (2010)) is not feasible because
of the different methodology employed here. Similarly, experimental measurements of
space-time correlations are largely confined to single-stream jets at moderate velocities.
Nevertheless, a broad comparison with single-stream experiments is attempted here, using
U and D as the single-stream jet velocity and diameter, respectively. There is general
agreement among several measurements of second-order space-time correlations (Harper-
Bourne 2003; Bridges 2006; Fleury et al. 2008; Morris & Zaman 2010b; Kerhervé et al.
2010) that, near the end of the potential core and at the lipline (which is expected to be
reasonably close to the OSPS), the width the spatial decorrelation envelope (R1 in figure
3) ranges from roughly from L1/D = 0.5 for the radial velocity correlation to L1/D = 2.0
for the axial velocity correlation. The corresponding width of the autocorrelation τ∗U/D
ranges from 0.2 for the radial velocity correlation to 0.8 for the axial velocity correlation.
To compare with the present model, we plot in figure 26 the axial distributions of L1/Dt

and τ∗Up/Dt on the OSPS of jet AXI03U. Near the end of the primary potential core
(x/Dt = 5.0), L1/Dt = 1.50 and τ∗Up/Dt = 0.55. These values are thus consistent, in an
overall sense, with the values measured in single-stream jets. The break in the distribution
of L1/Dt near x/Dt = 2 is due to the shift of the OSPS from the outer shear layer
to the inner shear layer. Assessment of the correlation scale L23 is not straightforward
because it is based on the transverse projected distance s (figure 5), for which correlation
measurements do not exist, and is subject to the constraints mentioned in section 3.5.4.
Similar trends are observed for jet AXI04U.
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Figure 22. Experimental and modeled spectra for jets AXI03U (red) and ECC08U (blue) at
polar angle θ0 = 35◦. (a)φ0 = 0◦; (b)φ0 = 30◦; (c)φ0 = 60◦; (d)φ0 = 90◦; (e)φ0 = 135◦; and
(f)φ0 = 180◦.
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Figure 23. Experimental and modeled spectra for jets AXI04U (red) and ECC12U (blue) at
polar angle θ0 = 35◦. (a)φ0 = 0◦; (b)φ0 = 30◦; (c)φ0 = 60◦; (d)φ0 = 90◦; and (e)φ0 = 180◦.
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Figure 24. Experimental and modeled changes in the overall sound pressure level versus
observer azimuthal angle, in the direction of peak emission, for jet ECC08U with jet AXI03U
as reference. (a) No weighting; (b) A-weighting using scale factor of 40.
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Figure 25. Experimental and modeled changes in the overall sound pressure level versus
observer azimuthal angle, in the direction of peak emission, for jet ECC12U with jet AXI04U
as reference. (a) No weighting; (b) A-weighting using scale factor of 40.
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Figure 26. Axial development of correlation length scale L1 and correlation time scale τ∗ on
the OSPS of jet AXI03U.
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7. Noise Reduction Mechanisms

The compact expression for the spectral density (3.21) provides guidance for funda-
mental ways to reduce noise within a fairly constant source volume. The first approach
is reduction of turbulence intensity. This influences directly the amplitude term A0000,
which is linear in turbulent kinetic energy k and Reynolds stress g. Reduction of the
turbulence level by 50%, typical of the reductions seen in figures 14 and 15, is expected
to reduce noise by about 3 dB, a relatively modest amount. Thus, reduction in turbulence
intensity does not explain the large spectral reductions measured in the downward
direction of peak emission (figure 12).

The second mechanism is reduction in correlation length and time scales, manifested by
the product L1L

2
23τ∗. In theory, this can be an effective noise suppression mechanism: if

all these scales were reduced say by factor of two, the four-dimensional correlation volume
would be reduced by factor of 16, translating into a 12-dB noise reduction. Breakup of
eddies could be achieved with nozzle devices like chevrons, microjets, or plasma actuators
(see Introduction). For practical implementation, the flow perturbations induced by such
approaches would have to be small to preserve aerodynamic efficiency or minimize their
energy cost. While it is possible to disorganize the turbulence in the vicinity of the nozzle,
the extent to which structures at large distances from the nozzle can be affected is not
clear, given the natural tendency of the shear layer to self-organize into large vortical
motions (Fiedler 1988).

The third mechanism is reduction in radiation efficiency described by the R̂1 term;
see also the discussion of section 3.7. To illustrate the potential of this approach, assume
an exponential form for the correlation R1(t) = exp(−|t|), so its Fourier transform is

R̂1(η) = 2/(1 + η2). Then,

R̂1

[
αL1

(
1

Mc
− cos θ0

)]
=

2

1 + (αL1)2
(

1
Mc

− cos θ0

)2 (7.1)

For Strouhal number on the order of 1, the RANS results indicate that αL1 ∼ 10 in the
most energetic regions of the flow. Now consider a reduction inMc from 1.2 to 0.8, which
is representative of the reduction noted in figure 19 for jet ECC08U near x/Dt = 6. For

Mc=1.2, the argument of R̂1 is zero in the direction θ = 35◦, therefore R̂1=2 and peak
radiation efficiency is achieved (Mach wave emission). Maintaining the same angle, and

reducing Mc to 0.8 we obtain R̂1=0.1, thus resulting in a 20-fold decline of the radiation
efficiency term. This is consistent with large spectral declines measured in this study.

It is of course difficult to completely isolate these mechanisms in an experimental or
computational study. However, a rough assessment of the effect of the radiation efficiency
can be obtained by setting Mc = u/a∞ in the radiation efficiency term R̂1, instead
of using (3.41). This setting, which is typically used for noise predictions in the 90-
deg direction (Morris & Farassat 2002), does not consider the organized structure of
turbulence. Therefore, the reduction in Mc noted in figures 17 to 20 is essentially lost.
Figure 27 plots spectral comparisons analogous to those of figure 22a with the setting
Mc = u/a∞. In figure 27a, the same parameter vector (Table 3, jet AXI03U) is used
as with the previous approach, so naturally the baseline spectra are not matched. In
figure 27b, the parameter vector V = [5.00, 3.85, 0.53, 1.36, 2.00] gives the best match
between modeled and experimental spectra, although the match is much worse than that
obtained with the previous Mc model. In both cases, the model fails to predict noise
reduction for Strouhal numbers greater than 1, whereas in the previous approach the
reductions were 10-15 dB, matching the experimental measurements (figure 22a). These
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Figure 27. Assessment of model with Mc = u/a∞ instead of (3.41). Experimental and modeled
spectra for jets AXI03U (red) and ECC08U (blue) at θ0 = 35◦ and φ0 = 0◦. (a) Original
parameter vector given in Table 3; (b) parameter vector that minimizes difference between
baseline (AXI03U) experimental and modeled spectra. Compare to figure 22a.

results underscore the importance of proper modeling of the radiation efficiency term and
the large impact that this term has on noise prediction and noise reduction in high-speed
jets.

8. Concluding Remarks

This study was motivated by the need for a physics-based, low-order model to predict
the noise changes in complex, multistream jets when the geometry of the nozzle is altered.
Particular emphasis is placed on asymmetric arrangements that cause directional noise
suppression. A RANS-based acoustic analogy framework was developed that addresses
the noise in the polar direction of peak emission and uses the Reynolds stress as a time-
averaged representation of the action of the coherent turbulent structures. The framework
preserves the simplicity of the original acoustic analogy formulation by Lighthill, using
the free-space Green’s function, while accounting for azimuthal effects via special forms
for the space-time correlation combined with source-observer relations based on the
Reynolds stress distribution in the jet plume. Below we summarize the main features
of this framework and comment on its application.
A central premise in the model is that the sound emission is strongly influenced

by the dynamics of the outer shear layer of the multistream jet. In a time-averaged
sense, we place attention on the outermost peak of the Reynolds stress, resulting in the
definition of the outer surface of peak Reynolds stress (OSPS). The mean axial velocity
on this surface is thought to best represent the convective velocity of the eddies primarily
responsible for peak noise emission. The axial convective Mach number, which controls
the radiation efficiency, is defined accordingly. The resulting OSPS surface and convective
Mach number distribution on this surfaces provide strong clues as to the noise reduction
potential of a particular nozzle configuration.
To model the azimuthal effects, it was necessary to utilize a polar coordinate system

centered around a properly re-defined jet axis (figure 2). The new jet axis passes through
the minimum value of the magnitude of the Reynolds stress inside the jet plume, and is
computed practically as the centroid of the high-speed region of the jet. The use of the
polar coordinate system imposes certain constraints on the types of correlations that can
be used on the cross-stream plane. Source separations cannot be described in separable
coordinates, necessitating the use of a mixed radial-azimuthal correlation. The usual
four-dimensional Fourier transform, that gives the wavenumber-frequency spectrum in
conventional formulations, is no longer possible or physical. Instead, a Hankel transform
on the cross-stream plane is used in conjunction with Fourier transforms in the timewise
and axial dimensions.
Modeling of the space-time correlation of the Lighthill stress tensor is the most critical
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step in any acoustic analogy effort. Here the space-time correlation is defined in a fixed
frame of reference. Its axial-timewise formulation is designed to reproduce qualitatively
the main features of the axial space-time correlation measured by a large number of past
works, and uses the aforementioned definition of axial convective velocity. The cross-
stream correlation is based on the projected distance between two source elements, a
formulation that helps ensure that the modeled power spectral density is real and non-
negative. An important feature is the inclusion of a transverse space-time correlation and
associated transverse convective velocity. In conjunction with the Hankel transform, the
transverse propagation induces an azimuthal directivity in the far-field spectral density.
The axial and timewise correlation functions are modeled as stretched exponentials,
enabling a flexibility that is very significant for calibrating the model. The cross-stream
correlation is limited to a Gaussian form for numerical efficiency.

The acoustic analogy model is calibrated based on knowledge of the spectral density
of a reference (axisymmetric) jet. In the present study, a five-element parameter vector
controls the characteristic scales and shape coefficients of the correlation functions. The
vector is determined via conjugate-gradient minimization of a cost function comprising
the difference between the modeled and experimental spectra of the reference jet as well
as penalty functions that constrain the parameters. This parameter vector is then applied
to the non-reference jets.

Results were presented for two sets of triple-stream jets, each set comprising a coaxial
reference jet and at least one asymmetric variant. A total of three asymmetric jets were
covered in this study, two featuring eccentric tertiary ducts and one combining eccentric
secondary and tertiary ducts. There is an excellent match between the experimental
and modeled reference jets. The model captures the azimuthal noise trends of the
asymmetric jets, and reproduces reasonably well the measured noise reduction. The
azimuthal variation of the A-weighted OASPL, in particular, is reproduced with an
accuracy of about 1 dB. A preliminary evaluation of the noise suppression mechanisms
indicates that the noise reduction of the asymmetric jets is caused primarily by the
reduction in radiation efficiency.

Regarding the numerical efficiency of the acoustic analogy scheme, once the RANS
solutions are available for the reference and non-reference jets, the prediction of their
spectral densities consumes on the order of one hour on a basic personal computer.
This includes the parameterization process of section 4, in conjunction with the methods
described in Appendix A.

Acknowledgments

The support by NASA Cooperative Agreement NNX14AR98A, monitored Dr. James
Bridges, is gratefully acknowledged. The author thanks Dr. Vincent Phong and Dr.
Juntao Xiong for their contributions in the experiments and computations, respectively.

Appendix A

Efficient computation of the power spectral density is important for the development
of practical predictive tools. Efficiency is particularly desirable for the baseline, axisym-
metric jets that will be subject to optimization routines requiring computation of the
power spectral density a large number of times.
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A.1. General Relations

Combining (3.21) and (3.40), we express the spectral density as the following set of
equations:

S(x0, ω) =

∫

V

[
Q0 +Q1 cos(φg − φ0)

]
H d3y (A 1a)

Q0 =
8

3
ρ2u2k cos2 θ0 (A 1b)

Q1 = 8ρ2u2g cos3 θ0 sin θ0 (A 1c)

H =
α4

16πR2
τ∗L1πL

2
23 R̂1R̂4R̃23 (A 1d)

A.2. Treatment of Half Jet

Time-averaged computations of jet flows having a plane of symmetry typically treat
only one half of the jet. In these cases, it is important to be able to compute the power
spectral density based on the half-jet data, that is, without creating the mirror image
and thus doubling the computational cost. Even for computations that treat the entire
jet, the ability to compute the power spectral density using only the symmetric half of
the data provides important computational savings.
Focusing on the azimuthal component of the integration of (A.1), and showing only

the azimuthal dependence of the variables involved, we examine the treatment of the
integral

Iφ =

∫ π

−π

[
Q0(φ) +Q1(φ) cos(φg(φ) − φ0)

]
H(φ, φ− φ0) dφ (A 2)

For the source term H , the notation H(φ, φ−φ0) indicates the azimuthal dependence of

the scales as well as the azimuthal directivity of R̃23 that involves the term cos(φ − φ0)
in (3.28). We note the following dependencies across the symmetry plane:

Q0(−φ) = Q0(φ)

Q1(−φ) = Q1(φ)

φg(−φ) = −φg(φ)
H(−φ,−φ− φ0) = H(φ, φ+ φ0)

(A 3)

It is now easy to show that the full-circle integral of (A.2) is equivalent to the integral
over the half-circle

Iφ =

∫ π

0

{
Q0(φ) [H(φ, φ− φ0) +H(φ, φ+ φ0)]

+Q1 [H(φ, φ− φ0) cos(φg(φ) − φ0) +H(φ, φ + φ0) cos(φg(φ) + φ0)]
}
dφ

(A 4)

This procedure allows the evaluation of the power spectral density by integration over
the volume of the half jet.

A.3. Special Treatment for Axisymmetric Jets

For axisymmetric jets, the computational cost can be further reduced by confining the
volume integral to an azimuthal slice of the jet. This is not a simple reduction because it
needs to account for the source-observer azimuthal dependencies in A0000 (i.e., the cosine

terms in (A.1)) as well as the azimuthal influence contained in R̃23. Having an analytical

relation for R̃23 is very useful in this regard. Using (3.28), the source term H of (A.1d)
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is expressed as

H = H ′eσ cos(φ−φ0) (A 5a)

H ′ =
α4

16πR2
τ∗L1πL

2
23R̂1R̂4 exp

{
−
(
αL23

2

)2 (
sin2 θ0 +

1

µ2
c

)}
(A 5b)

σ =
(αL23)

2 sin θ0
2µc

(A 5c)

Now it is assumed that the gradient-based azimuthal angle φg equals the geometric az-
imuthal angle φ. This is valid for a mean velocity profile that is monotonically decreasing
with radius and is applicable to the dominant source region of the axisymmetric jets
under consideration here. Then (A.1a)becomes

S(x0, ω) =

∫

V

H ′ [Q0 + Q1 cos(φ− φ0)] e
σ cos(φ−φ0) d3y (A 6)

Noting that H ′, Q0, and Q1 are all purely axisymmetric, the only azimuthal dependence
in the integrand comes from the cos(φ−φ0) terms. Invoking the integral representations
of the modified Bessel functions, the azimuthal component of the integration results in
the terms

∫ π

−π

eσ cos(φ−φ0)dφ = 2πI0(σ) (A 7)

∫ π

−π

cos(φ− φ0)e
σ cos(φ−φ0)dφ = 2πI1(σ) (A 8)

where I0 and I1 are the modified Bessel functions of the first kind and of orders zero and
one, respectively. Now (A.6) collapses into the two-dimensional integral

S(x0, ω) = 2π

∫ ∞

0

∫ ∞

0

H ′
[
Q0I0(σ) +Q1I1(σ)

]
ydy dX (A 9)

While in theory the reduction to two dimensions cuts down the computational demands
dramatically, the expectation of sufficiently resolved data on a given meridional section
is not realistic. Computational codes produce data in three-dimensional grids that may
not purely axisymmetric (even for the treatment of axisymmetric jets) and thus cannot
be readily transformed into a radial set. Interpolation on a meridional section presents
numerical challenges that can introduce errors with large impact on the noise prediction,
particularly in the very thin shear layers near the nozzle exit. On the other hand,
restricting the integration to an azimuthal slice containing a sufficient population of
elements is a very simple procedure. It is accomplished here by realizing that (A.9) is
equivalent to

S(x0, ω) =
2π

Φ

∫ Φ

0

∫ ∞

0

∫ ∞

0

H ′
[
Q0I0(σ) +Q1I1(σ)

]
ydy dXdφ (A 10)

The integral now represents a volumetric integration over an azimuthal slice of angle Φ,
and can be expressed compactly as

S(x0, ω) =
2π

Φ

∫

VΦ

H ′
[
Q0I0(σ) +Q1I1(σ)

]
d3y (A 11)

where VΦ is the volume of the slice. Through experimentation it was determined that a
5-degree azimuthal slice contained a sufficient number of elements to compute the power
spectral density with excellent accuracy, within a few tenths of a decibel, as compared
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to integration over the entire volume. The resulting 36-fold reduction in computational
time, relative to treating the entire half-jet, benefits tremendously the conjugate-gradient
minimization process described in section 4.2, which requires evaluation of the spectral
density on the order of 100 times.
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