
Advances in the Direct Spectral Estimation of Aeroacoustic

Sources Using Continuous-Scan Phased Arrays

David Morata∗ and Dimitri Papamoschou.†

University of California, Irvine, Irvine, CA, 92607

The paper presents improvements to the methodology for the direct estimation of the spatio-

spectral distribution of an acoustic source from microphone measurements that comprise fixed

and continuously scanning sensors. The signals from the scanning sensors are non-stationary

due to the time-varying source-sensor distance and the traversing of an acoustic field with

spatially varying statistics. Quasi-stationarity is sought by dividing the signals into blocks

and applying of a frequency-dependent window within each block. The effects of the block

distribution and width of the window on the acoustic source images are analyzed and guidelines

are developed for optimal block sizes. The methodology is applied to acoustic fields emitted by

a subsonic jet in isolation and surrounded by a plate in shielding and reflection orientations.

The experimental setup consists of a microphone phased array with one scanning and multiple

fixed sensors. The ability of the continuous-scan paradigm, coupled with the improved signal

division, to provide high-definition noise source maps is demonstrated.

Nomenclature
a = speed of sound

cλ = fraction of acoustic wavelength traveled

ccov = coverage of Gaussian window width

D = jet diameter

f = cyclic frequency

Fs = sampling rate

K = number of blocks

ℓ = source-sensor distance

NB = size of the block (in samples)

NT = size of the signal (in samples)

NFFT = size of Fast Fourier Transform

p = pressure fluctuation

S = number of segments in a block

t = time

T = duration of the block

U = fully-expanded jet velocity

V = sensor speed

x = axial coordinate

y = transverse coordinate

δ = width of Gaussian window

ǫ = error

θ = polar angle relative to jet axis

λ = acoustic wavelength

ξ = axial coordinate

ψ = coherence-based source distribution

σS = segment overlap

σB = block overlap

τ = source-sensor time

ω = angular frequency
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ω′ = Doppler-shifted frequency

ω′′ = frequency of spectral oscillation

Subscripts

f = fixed sensor

k = block index

m,n = sensor indices

s = scanning sensor

Acronyms

DAS = Delay and Sum

DSE = Direct Spectral Estimation

DSEV = Direct Spectral Estimation with Variable Block Division

FFT = Fast Fourier Transform

SPL = Sound Pressure Level

WVS = Wigner-Ville spectrum

XWVS = cross Wigner-Ville spectrum

I. Introduction
Noise source imaging using a collection of microphone measurements has become an indispensable tool of

aeroacoustic investigations. Traditional beamforming generates noise source maps by “steering” the microphone array

to a region of interest. The resulting image is a convolution between the modeled source distribution and the array

point spread function. To improve the spatial resolution of the image, and reject the sidelobes that are inherent in the

point spread function, various deconvolution approaches have been developed [1–4]. An alternative to the steering

approach is direct estimation of the the source distribution via least-square minimization of the difference between

the modeled and the measured pressure statistics. These statistics are typically in the forms of the cross-spectral or

coherence matrices. The required inversion can be performed by a variety of methods, including Bayesian estimation

[5–7]. The direct estimation approach has been shown to provide results comparable or superior to those obtained via

the deconvolution method [5, 8].

Recently there has been increasing interest in microphone arrays in which one or more of the sensors are traversing

along prescribed paths in a continuous motion. For a fixed sensor count, the continuous-scan paradigm can improve the

spatial resolution and the overall quality of of the noise source maps. It has found applications in near-field holography

[9, 10], order tracking [11] and beamforming [5, 8, 12]. Sensor motion introduces non-stationarity in the signal statistics

that requires special processing techniques. A methodology for the direct spectral estimation of acoustic sources from

microphone measurements involving fixed and scanning sensors was presented in Ref. [5]. The technique used the

Wigner-Ville spectrum to quantify the non-stationarity of the signal arising from the scanning sensors. Suppression

of the non-stationarity involved the division of the signal into blocks and the application of a frequency-dependent

window within each block.

The goal of the present study is optimization of the signal treatment for handling non-stationary signals in the direct

spectral estimation method. Geometric effects, spatial resolution, spectral accuracy, and adequacy of samples within

each block are considered in the formulation of criteria for optimal block size and block overlap within frequency ranges.

The optimized methodology is applied to the acoustic field emitted by a subsonic jet in isolation and surrounded by a

rectangular plate in shielding and reflection orientations.

II. Inverse Acoustic Methodology for Continuous-Scan Phased Arrays
This section outlines the key features of the direct spectral estimation method with scanning sensors of Ref. [5].

The application is a turbulent jet whose noise source distribution is approximated by a line of uncorrelated monopoles,

as depicted in Fig. 1, where ξ is the source coordinate. We allow for directional sources and denote the source

distribution q(ξ, θ, t), with θ the polar angle measured from location ξ. A series of microphone sensors is deployed,
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each sensor traversing with a speed Vm along a path parallel to the source line. Assuming spherical spreading in a

quiescent medium with uniform speed of sound a, and allowing for slow scan with Vm << a, the pressure recorded by

sensor m is [5]

pm(t) =
∫

L

1

ℓm(ξ, t)
q[ξ, θm(ξ, t), t − τm(ξ, t)]dξ (1)

where

τm(ξ, t) =
ℓm(ξ, t)

a
(2)

is the source-sensor propagation time and ℓm(ξ, t) is the source-sensor distance. The integration along the source axis

ξ is limited to the region of interest L where significant noise sources are expected. Non-stationarity arises from the

time variation of ℓm(ξ, t) as well as the traversing of an acoustic field with spatially-varying statistics.
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Fig. 1 Line source distribution and geometry of scanning sensor.

The Wigner-Ville spectrum (WVS) was identified as a robust method for spectral analysis of non-stationary signals.

The WVS is defined as the Fourier Transform of the symmetric autocorrelation (or cross-correlation for the XWVS).

For stationary processes, the ensemble average is replaced with the time average invoking the principle of ergodicity.

For a non-stationary process, this is not possible unless the signal is quasi-stationary. Quasi-stationary is achieved

by segmenting the signal into smaller blocks. Considering block k with center time tk and duration T , subscript mk

denotes the quantities associated with sensor m at t = tk . The following approximations are made:

τm(ξ, t) ≈ τmk(ξ) +
( ∂τm(ξ, t)

∂t

)

t=tk
(t − tk)

ℓm(ξ, t) ≈ ℓmk(ξ)
θm(ξ, t) ≈ θmk

(3)

The validity of the approximations of Eq. 3 drives the definition of an upper bound for the block size, to be detailed in

Section IV.

The most serious effect of non-stationarity is on the correlation of signals from sensors having a relative velocity.

At frequency ω the XVWS of sensor signals pm(t) and pn(t) is affected by two parameters linked to the motion of the

sensors: a Doppler-shifted frequency

ω′
mnk = ω

[

1 +
1

2

(

Vm

a
cos θmk (ξ) +

Vn

a
cos θnk (x)

)]

(4)
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Fig. 2 Illustration of division of the signal into K quasi-stationary blocks.

and a frequency of oscillation of the entire spectrum

ω′′
mnk = ω

[Vn

a
cos θnk (x) −

Vm

a
cos θmk (ξ)

]

(5)

where x is a running coordinate along ξ. Minimization of ω′′
mnk

to near-zero value is essential for accurate imaging

and constitutes the strongest challenge in the signal processing. Considering only one sensor scanning with velocity

Vm, suppression of the oscillation requires

VmT ≪ λ

π cos θµk
(6)

where T is the duration of the block and λ is the acoustic wavelength. This motivates the implementation of a Gaussian

frequency-dependent window[5] of the signal within each block to meet the above criterion. The width of the window

δ satisfies

Vmδ = cλλ = cλ
a

f
(7)

where cλ is the fraction of the acoustic wavelength that the sensor traverses in time δ. Typical value for cλ is 0.2.

Meeting the requirement of Eq. 7 while retaining critical information of the signal requires a careful balance of block

size, block overlap, and size of the Fourier transform used to compute the spectrum. This is at the heart of the new

signal processing procedures presented here.

Following the development in Ref. [5] the coherence of the acoustic field for block k is

γmnk (ω) =
∫

L
Zmnk (x,ω) ψ(x,ω)dx (8)

where ψ(x,ω) is the coherence-based noise source distribution and

Zmnk (x0,ω) = exp
{

iω′
mnk [τnk (x0) − τmk (x0)]

}

(9)

is the array response matrix which describes the modeled coherence of the acoustic field for a point source at x = x0.

Equation 8 represents a model for the coherence of the acoustic field and constitutes the basis for the solutions that will

follow. The diagonal terms of satisfy
∫

L
ψ(x,ω)dx = 1 (10)

This is an important property of the coherence-based noise source that should be kept in mind when examining its

spatial distribution. Equation 8 is inverted here using a Bayesian estimation method [5].
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III. Block Division
The block division introduced in the previous section has direct impact on the quality of the noise source maps

and requires a thorough evaluation. Criteria to determine the number of blocks and their size are formulated in terms

of the geometry of the microphone array, the source directivity, the spectral estimation algorithm, and the width of

the frequency-dependent window. Guidance for the optimal number of blocks, block size, and block overlap will be

developed. We only consider a uniform signal division (equal block sizes) for each frequency range of interest.
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Fig. 3 Distance and angle variations associated with the length of a signal block.

A. Maximum Block Size

The evaluation of the maximum block size is based on the quasi-stationary approximations of Eq. 3. Referring to

Fig. 3, in the analysis that follows the origin of the source is placed at the origin (ξ, y) = (0,0) for simplicity. This is

valid when the sensors are in the geometric far field; otherwise, the steps presented below would need to be extended

to various locations in the source region.

The first concern is the validity ℓm(ξ, t) ≈ ℓmk(ξ) in Eq. 3. Considering a given block k for sensor m, this involves

the variation of the source-sensor distance within the block and can be quantified as

ǫℓ,mk =
|∆ℓmk |
ℓmk

(11)

where ℓmk is the source-sensor distance at the center of the block and ∆ℓmk is the variation of this distance across the

block, as illustrated in Fig. 3.

The second concern is the approximation θm(ξ, t) ≈ θmk . For a substantially omnidirectional acoustic field, this

approximation is directly connected to Eq. 11 and can thus be made redundant. However, in a field with strong

directivity, the directivity can overwhelm geometric effects and therefore the validity of this approximation needs to be

evaluated separately. Considering a source with characteristic polar directivity Θ, the error is formulated as

ǫθ,mk =
|∆θmk |
Θ

(12)

where ∆θmk is the polar angle variation across the block, as indicated in Fig. 3. As an example, Fig. 4 plots the far-field

narrowband spectra for a cold Mach 0.9 jet studied here at a number of polar angles θ. Near the angle of peak emission

( θ = 30◦) the spectrum varies as much as 3 dB for ∆θ = 5◦. In this case, we selected Θ = 0.0873 rad = 5◦.
To determine the maximum bound on the block size, first the error thresholds are set. In this study, we selected

ǫℓ,mk = 0.01 and ǫθ,mk = 0.3. The sensor’s trajectory is discretized into fine increments xk, k = 1, . . . ,M representing

the location of the center of a block. For each xk , the sample size Nk of the block determines its spatial extent through

the sampling rate Fs and the sensor speed Vm, allowing calculation of the errors. Nk is increased from low value until
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(a) (b)

Fig. 4 Variation of narrowband SPL spectra with polar angle from the jet axis for a cold subsonic jet with

M = 0.9 exit flow studied in this work. (a) Spectra near the direction of peak emission; (b) spectra near the

broadside direction.

one of the error thresholds is exceeded; this sets the final value of Nk . Seeking a uniform block size, the maximum

bound is set equal to the minimum value of the vector Nk , that is,

NBmax = min(Nk, k = 1, . . . ,M) (13)

B. Minimum Block Size

The need to suppress the spectral oscillation frequency of Eq. 5 drives the processing towards small block sizes,

particularly at high frequency. However, the block needs to contain sufficient samples to compute the auto- and cross-

spectral densities accurately, the latter being strongly impacted by non-stationarity. This motivates the development of

a criterion for the lower bound of the block size.

Consider signals pm(t) and pn(t) corresponding to the pressure recorded by a scanning sensor and a fixed sensor,

respectively. The signals are divided into K overlapping or non-overlapping blocks, each one of them containing NB

samples. For each block, the cross-spectral density is estimated by (i) dividing each signal into S segments with overlap

σS; (ii) computing the Fast Fourier Transform (FFT) of the signals in each segment; (iii) multiplying appropriately

the FFTs of the two signals within each segment; and (iv) averaging the results over the number of segments. In the

last step, the accuracy and smoothness of the result improve with increasing S. The FFT algorithm requires that each

segment contains 2NFFT samples, where NFFT is the size of the Fourier Transform. It is easy to show that the size of

the block is related to the number of segments, segment overlap, and FFT size as follows:

NB = 2NFFT

[

(1 − σS)(S − 1) + 1
]

(14)

For fixed segment overlap and FFT size, the minimum size of the block is dependent on the smallest number of

segments that allows for accurate spectral estimation. This is directly linked to the nature of the acoustic source as well

as to the array geometry.

We propose a method to evaluate the accuracy of spectral estimation by using the narrowband sound pressure level

(SPL) spectrum of the scanning sensor. The SPL is computed with fixed overlap, fixed NFFT, and increasing number

of segments S (thus increasing number of total samples) until the maximum bound, determined in the previous section,

is reached. Denoting SPLS and SPLS−1 the SPL computed with number of segments S and S − 1, respectively, the

difference ∆SPLS = SPLS - SPLS−1 is plotted versus S for a number of frequencies. Figure 5 plots this relationship for

the present jet and array geometry, with NFFT = 512 and σS = 0.5. It is seen that ∆SPLS undergoes strong oscillations

when the number of segments is small. At around S = 15 the spectral estimation achieves an accuracy of ∼0.3 dB.

Beyond this value, improvement is very gradual. The envelope (dashed line) drawn in Fig. 5 provides guidance as to

the minimum number of segments Smin required for accurate spectral estimation. It is advisable to perform this analysis

for various values of NFFT, although in the present experiments the result was largely independent of NFFT. From Eq.

14 the minimum size of the block becomes

NBmin
= 2NFFT

[

(1 − σS)(Smin − 1) + 1
]

(15)
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Fig. 5 ∆SPL computed with consecutive segment increases as a function of the number of segments.

C. Effect of the Frequency-Dependent Window

The Gaussian window associated with Eq. 7 has the form

g(t,ω) = A(ω) exp

{

−
[

t

δ(ω)

]2
}

(16)

where δ(ω) is a time scale that declines with frequency (Eq. 7) and

A(ω) =
(

2

π

)1/4 √√
√ T

δ(ω)
1

erf
(

T√
2 δ(ω)

) (17)

is an amplitude that makes the window energy-preserving [5]. Multiplication of the signal within each block by a

frequency-dependent window produces an effective reduction of the block size, as illustrated in Fig. 6. The reduction

can be severe at high frequency, meaning that a significant portion of the block is unused.

(a) (b) (c)

Fig. 6 Example of the frequency-dependent Gaussian window for frequencies of f = 10 kHz and f = 90 kHz.

(a) Shape of the Gaussian envelope; (b) pressure signal multiplied by the Gaussian window for f = 10 kHz; (c)

pressure signal multiplied by the Gaussian window for f = 90 kHz;

To limit the loss of information,we can consider maintaining the ratioT/δconstant. This would entail different block

division for each frequency and therefore spectral estimation for each element of the frequency vector at prohibitive

computational cost. It would also obviate the need for the Gaussian window, which allows efficient spectral estimation

across the entire frequency vector. However, it will be shown that setting T ∼ δ connects directly T to the size of the
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FFT, which has a step-wise relation with frequency. In other words, the above relation becomes discrete and requires

spectral estimation for only a small number of frequency ranges, typically four.

The window width must be adequately covered by the segments used in the spectral estimation. We require coverage

of ccov non-overlapping segments, meaning that

δ = ccov ∆tseg

where ∆tseg = 2NFFT/Fs is the duration of each segment. Accordingly,

T = 2
T

δ
ccov

NFFT

Fs

Multiplying by Fs we obtain an additional upper bound on the block size, which we denote

N∗
Bmax

= 2
T

δ
ccov NFFT (18)

The coverage requirement imposes the restriction [5]

NFFT ≤ 1

2

cλ

ccov

a

Vm

Fs

f
(19)

Because NFFT must be a power of two, this entails discrete reduction of NFFT with increasing frequency, and attendant

discrete reduction of the block size.

For example, setting T/δ = 1.7 ensures that the tails of the Gaussian filter reach 50% of the peak value at the ends

of the block. For adequate coverage of δ, a reasonable selection is ccov = 5. Then, Eq. 18 becomes

N∗
Bmax

= 17 NFFT

Matching the lower and upper bounds given by Eqs. 15 and 18, respectively, allows determination of the segment

overlap

σS = 1 −

T

δ
ccov − 1

Smin − 1
(20)

D. Number of Blocks and Block Overlap

Considering a signal with total number of samples NT divided into blocks of size NB and overlap σB, it is

straightforward to derive that the number of blocks is

K = 1 +
1 − NB

NT

NB

NT
(1 − σB)

(21)

The ratio NB/NT is a dimensionless block size. The block overlap quantifies the repeated information contained in

contiguous blocks. A large block overlap increases the total computation time as it increases the number of blocks

without gaining new information. It is important to note that is a direct relation betwen the the number of blocks and

the number of independent elements J of the coherence matrix, as presented in Ref. [5]:

J = M2
f − Mf + 1 + K Ms(Ms + 2Mf − 1) (22)

where Mf and Ms are the number of fixed and scanning sensors, respectively. The size of J relates to the cost of

computing the coherence matrix as well as the cost of inverting the integral of Eq. 8. On the other hand, a low block

overlap combined with a large number of blocks might lead to small block size that violates the minimum bound

previously discussed. In addition, low block overlap combined with a small number of blocks may result into large

block size that compromises the spatial resolution of the method at high frequency, as will be discussed in the next

section. It is thus reasonable to determine a range of block overlap that does not penalize the accuracy of the spectral

estimation and avoids unnecessary computations while enhancing the spatial resolution of imaging. Here, we propose

a range of block overlap between σB = 0.1 and σB = 0.5 that accounts for these considerations.
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E. Optimal Signal Division

We summarize the guidance for signal division. There is a geometric criterion, Eq. 13, that sets an upper bound on

block size, NBmax , for ensuring that the approximations of Eq. 3 are valid. The accuracy of spectral estimation imposes

a lower bound, NBmin
, formulated in Eq. 15. Prevention of information loss from the frequency-dependent window

that filters each block requires an additional maximum bound, N∗
Bmax

, defined by Eq. 18. Both NBmin
and N∗

Bmax
are

directly proportional to the size of the FFT, NFFT, used for spectral estimation, which has a step-wise declining relation

with frequency.

The qualitative diagrams of Fig. 7 help explain these relationships. Figure 7a displays the trend of the block-size

bounds versus NFFT. NBmax is invariant on NFFT since it depends only on the array geometry and speed of the sensor.

N∗
Bmax

and NBmin
are linear with NFFT. The area bounded by N∗

Bmax
, NBmin

, and NBmax (highlighted in green) represents

optimal block sizes. The relation of NFFT with frequency is sketched in Fig. 7b. It declines in step-ladder fashion

with frequency following Eq. 19 and the requirement that NFFT be an integer power of two. Figure Fig. 7c represents

the combination of the trends in the previous figures, showing that N∗
Bmax

and NBmin
decline in discrete steps with

increasing frequency. The green region again represents optimal block sizes. The sample size of the window width

δFs is a smooth function of frequency. So, while the block size experiences discrete changes, the smoothness of δ

ensures that filtering is done in a continuous fashion with minimal loss of information.

It is possible to match N∗
Bmax

and NBmin
by setting the overlap of signal segmentationσS (used in spectral estimation)

according to Eq. 20. This would result in the most efficient block division in terms of computational cost. Once the

block sizes are set versus frequency, the number of blocks follows Eq. 21. If it turns out that N∗
Bmax

< NBmin
, and this

cannot be fixed by reasonable settings of σS, it would imply that experimental parameters such as sensor speed and

sampling frequency may need to be revised.
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Fig. 7 Trends governing the determination of optimal block size. (a) Block-size bounds versus NFFT; (b) NFFT

relation with frequency; (c) Block-size bounds and Gaussian window width (in samples) versus frequency. Green

regions indicates optimal block size.

IV. Experimental Setup

A. Phased Microphone Array

Noise measurements were conducted in the UCI Aeroacoustics Facility whose anechoic chanber is depicted in Fig.

8. The microphone array comprises twenty-four 1/8-inch condenser microphones (Brüel and Kjaer, Model 4138). The

microphones are connected, in groups of four, to six conditioning amplifiers (Brüel and Kjaer, Model 2690-A-0S4).

The outputs of the amplifiers are sampled simultaneously, at 250 kHz per channel, by three 8-channel multi-function

data acquisition boards (National Instruments PCI-6143) installed in a PC with Intel i7-7700K quad-core processor.

National Instruments Labview software is used to acquire the signals with a custom built program and user interface.

Temperature and humidity are recorded inside the anechoic chamber to enable computation of atmospheric absorption

and calculation of the exact speed of sound. The microphone signals were conditioned with a high-pass filter set at 350

Hz to remove any spurious noise. Narrowband sound pressure level (SPL) spectra were computed with NFFT=2048
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yielding a frequency resolution of 122 Hz. The spectra were corrected for microphone actuator response, microphone

free field response and atmospheric absorption, thus resulting in lossless spectra. They are referenced to a radius of

0.305 m.

On the L-shaped holder of the fixed microphones, 12 microphones were arranged on the horizontal arm and 11 on

the vertical arm. The scanning microphone was mounted on a linear traverse consisting of a belt drive (Igus ZLW-0630)

powered by a servo motor (ClearPath MCPV). It scan line was ∆y = 6 mm above the line of the fixed sensors on the

horizontal arm of the holder. Figure 9a plots the coordinates of the fixed sensors and initial location of the scanning

sensor for the nominal array configuration on the horizontal arm (the coordinates of the sensors on the vertical arm

are not included). A sparse array configuration, depicted in Fig. 9b, utilized the scanning sensor with only four fixed

sensors on the horizontal arm and none on the vertical arm. The nominal array covered a polar angle sector θ = 19◦ to

98◦.
During microphone signal acquisition the servo was programmed to rotate at fixed revolutions per minute, moving

the linear stage at constant speed of 75.94 mm/s with a stroke length of 900 mm. To avoid damage to the sensor, a

smooth ramp up and ramp down of the sensor speed was programmed. The position of the traverse was monitored via

the motor encoder and independently using a laser-based distance measurement device (SICK OD1000). A total of

3 × 106 samples were acquired for each channel corresponding to an acquisition time of 12 s. A frequency-dependent

Gaussian window with cλ = 0.2 was applied in the computation of the noise source maps.

Anechoic Chamber 1.9 × 2.2 × 2.2 m

Jet nozzle

θ
BK4138 

Microphones

Scanning microphone

x

y

Fig. 8 Anechoic chamber and qualitative deployment of the microphones.

B. Signal Division

We present noise source maps computed obtained with three methods: Delay and sum (DAS); Direct Spectral

Estimation (DSE) using uniform block division; and Direct Spectral Estimation using variable block division according

the guidance developed in Section III. We will refer to the latter method as DSEV. For both DSE and DSEV, the integral

of Eq. 8 was inverted using the Bayesian estimation approach of Ref. [5]. The DAS method used only fixed sensors

with NFFT = 2048, while DSE and DSEV utilized fixed and scanning sensors in the deployments shown in Fig. 9. Table

1 lists the block schedule and other relevant parameters for DSEV. DSE used the same NFFT schedule as DSEV but

with fixed K= 48, NB = 122880, and σB = 0.5. For both DSE and DSEV, noise source maps are obtained by patching

results at the various frequency ranges indicated.

C. Noise Sources

This study examined a jet source and its interaction with a shielding plate and a reflection plate. The jet issued

from a convergent nozzle with exit diameter D = 21.8 mm. It was supplied by air at room temperature and pressure of
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(a)

(b)

Fig. 9 Coordinates of fixed sensors on horizontal arm and initial position of scanning sensor for two array

configurations: (a) nominal; (b) sparse.

Frequency Range (kHz) NFFT NB T (s) K σB

0-25 2048 36000 0.144 166 0.50

25-50 1024 15000 0.060 399 0.50

50-70 512 8026 0.032 750 0.50

70-95 256 4080 0.016 1480 0.50

Table 1 Block division for DSEV method.

10 psig, producing an exhaust at Mach number M = 0.9 and velocity U= 309 m/s. The nozzle and microphone array

are depicted in Fig. 10.

Fig. 10 Jet nozzle and microphone array.

A rectangular aluminum plate was integrated with the jet to study the effects of shielding and reflection. The plate

had thickness of 2 mm, span of 610 mm, and chord length c = 128 mm. A schematic of the setup is depicted in Fig.

11. The vertical distance H from the jet axis to the plate was kept constant while the horizontal distance L of the

trailing edge from the nozzle exit plane was varied according to Table 2. Rotation of the plate enabled shielding and

reflection measurements. Images of the setup are depicted in Fig. 12. For the largest L = 127 mm, the trailing edge

was positioned at an angle of 20◦ relative to the jet centerline, a value much larger than the spreading rate of the shear
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layer (see, for example, Ref. [13]). Therefore, the jet was not scrubbing on the plate.

Experiment L (mm) H (mm) Case

JET0261 - - Isolated

JET0221 101.6 45 Shielding

JET0231 127.0 45 Shielding

JET0251 101.6 45 Reflection

JET0241 127.0 45 Reflection

Table 2 Geometry of installed configurations.

L

Nozzle

Plate

c

H

Direction of 
measurement 
for shielding

Direction of 
measurement 
for reflection

Fig. 11 Schematic of the nozzle integrated with plate.

(a) (b)

Fig. 12 Pictures of installed configuration with L=101.6 mm. (a) Shielding orientation; (b) reflection orienta-

tion.
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V. Results
Acoustic results are first presented for the nominal array configuration of Fig. 9a,where all the available microphones

were used. They are followed by results using the sparse array of Fig. 9b.

A. Isolated Jet

Figure 13 plots the lossless narrowband SPL spectra for the isolated jet, measured with the fixed microphones

only, at various polar angles θ. The spectra are clearly directional with the turbulent mixing noise undergoing strong

variations with polar angle. Figure 14 presents coherence-based noise source maps (ψ(x,ω) of Eq. 8) for the isolated jet,

obtained with the DAS, DSE, and DSEV methods. The DAS map shows strong sidelobes and its the spatial resolution

is very limited. The spatial features of the source, especially at the high frequencies, are smeared and distoreted due to

the sidelobes. The DSE map results in a more defined source with strong suppression of the sidelobes. The DSEV map

shows increased resolution at high frequency and practically complete suppression of the sidelobes. Spectral peaks at

low frequency are likely due to internal noise (see for example [14]) and are not relevant to these or subsequent results.

The axial distribution of the source is in line with previous findings [15]: the peak noise source location for lowest

frequencies extends significantly downstream and it moves closer to the nozzle exit as the frequency increases.

Fig. 13 SPL spectra for the isolated jet at various polar angles.

It is useful to examine the source distributions of Fig. 14 for the high frequencies, as presented in Fig. 15. It is seen

how the noise source map is sharper and practically devoid of sidelobes when using the improved signal division. The

dense block distribution at the high frequencies increases the number of small distances between microphone pairs and

translates into higher spatial resolution. The DAS map is not included since it does not provide useful information at

the high frequencies.

B. Jet with Installation Effects

Figure 16 plots the SPL spectra the isolated jet and the jet with plate in the shielding configuration (L = 101.6 mm

= 4.7D), measured with the fixed microphones only, for various polar angles θ. As noted in earlier works [16], in the

shielding configuration the plate suppresses sound at high frequency but amplifies sound at low frequency. Within the

range of the measurements, a peak reduction of ∼8 dB is achieved at θ = 97.8◦ and at a frequency of around 100 kHz.

The stronger shielding at the high frequencies relates to the noise source location moving closer to the nozzle exit plane,

as seen in the noise source maps of the isolated jet in Fig. 14. However, the peak source location at low frequencies

extends up to 7-8D downstream of the nozzle exit plane thus is not effectively shielded, In addition, sound scattered

from the plate trailing edge can overwhelm the acoustic field of the isolated jet at large polar angle, which explains

the spectral rise at low frequency. Figure 17 presents similar results for L extended to 127 mm (5.8D). Expectedly,

the shielding becomes stronger, reaching around 11 dB achieved at θ = 97.82◦ and 100 kHz; amplification at low
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(a) (b) (c)

Fig. 14 Coherence-based noise source distribution ψ(x,ω) for the isolated jet. (a) DAS; (b) DSE; (c) DSEV.

(a) (b)

Fig. 15 Detail of the coherence-based source strength ψ(x,ω) for the isolated jet at high frequencies. (a) DSE;

(b) DSEV.

frequency is moderately enhanced compared to L = 101.6 mm.

Figure 18 presents three coherence-based noise source maps for the jet with shielding (L = 101.6 mm), analogous

to those of the isolated jet in Fig. 14. The DAS map suffers from strong sidelobes as in the isolated case. Although

the noise source might be correctly localized, little usable information is extracted for frequencies higher than 30 kHz.

The DSE map shows a clear improvement when compared to DAS: the sidelobes are strongly supressed and the spatial

resolution is enhanced, especially at the high frequencies. The DSEV method results in a map of higher quality; while

the spatial resolution at low frequencies (up to 30 kHz) is comparable to that obtained with the DSE method, there is

clear improvement at high frequencies. The frequencies resolved are extended up to 100 kHz, compared to around 85

kHz with the DSE. The DSEV map is practically devoid of sidelobes and the source becomes more continuous for all

frequencies. The low frequency noise sources become more intense when compared to the isolated jet. This is also

seen in Refs. [15, 16]. Noise from the trailing edge is evident at low frequency. Focusing on the high frequencies,

Fig. 19 shows that the noise source map becomes sharper and practically devoid of sidelobes when using the improved

14



Fig. 16 SPL spectra for the isolated (black lines) and shielded (blue lines) jet at various polar angles. Plate

trailing edge at L = 101.6mm.

Fig. 17 SPL spectra for the isolated (black lines) and shielded (blue lines) jet at various polar angles. Plate

trailing edge at L = 127.0mm.

signal division. Finally, Fig. 20 compares DSEV maps for the isolated jet and the jet with the shielding plate at L =

101.6 mm and 127.0 mm. With the plate, the spatial distribution of the acoustic source becomes more confined at low

frequency, suggesting the dominance of sound scattered by the trailing edge.

C. Jet with Reflection Plate

Figures 21 and 22 plot the SPL spectra for the isolated jet and jet with plate in the reflection configuration with L =

101.6 mm and 127.0 mm, respectively. The reflection causes a significant spectral increase at low frequency and modest

increase at high frequency. The trends are generally in line with previous works (e.g., Ref. [15]). Figure 23 presents

noise source maps in analogy with Fig. 18. The same general observations apply as in the shielding maps, with DSEV

showing clear improvement in resolving the source at high frequency and suppressing the sidelobes. Comparison of

the maps in Fig. 25 indicates that the reflection affects modestly the distribution of the coherence-based noise source at

high frequency, but causes a concentration of the source near the trailing edge at low frequency. The latter observation
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(a) (b) (c)

Fig. 18 Coherence-based source distribution ψ(x,ω) for the jet with plate in shielding configuration with

L = 101.6 mm (white vertical lines). (a) DAS; (b) DSE; (c) DSEV.

(b)

Fig. 19 High-frequency portion of the coherence-based source distribution ψ(x,ω) for the jet with plate in

shielding configuration with L = 101.6 mm (white vertical lines). (a) DSE; (b) DSEV.

again suggests the dominance of scattering from the trailing edge at low frequency.

D. Imaging with a Sparse Array

The continuous-scan paradigm has been shown to improve the spatial resolution of the noise source when using

sparse microphone arrays [5]. This section evaluates the performance of the proposed signal division on the resulting

noise source maps using the sparse array of Fig. 9b. A total of 5 microphones are used; 5 fixed microphones DAS;

4 fixed and one scanning microphones for DSE and DSEV. The noise source maps of Fig. 26 indicate the failure of

DAS to provide any meaningful information and the superiority of DSEV over DSE. In particular, the DSEV is able to

resolve the noise source map at frequency up to 100 kHz, while DSE can only resolve up to 50 kHz. The suppression

of sidelobes with DSEV is evident. This underscores how the continuous-scan approach, combined with the proposed
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(b) (c)(��

Fig. 20 DSEV maps of coherence-based source distribution ψ(x,ω). (a) Isolated jet; (b) jet with the shielding

plate at L = 101.6 mm; (c) jet with the shielding plate at L = 127 mm. The white vertical lines mark the position

of the trailing edge.

Fig. 21 SPL spectra for the isolated (black lines) and reflected (red lines) jet at various polar angles. Plate

trailing edge at L = 101.6mm.

signal segmentation, can provide very high quality noise source images even when using microphone arrays with a

small number of sensors. The proposed signal division increases the number of small distances between microphone

pairs, particularly for high frequencies, which translates into a reduced aliasing effect and a finer spatial resolution.
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Fig. 22 SPL spectra for the isolated (black lines) and reflected (red lines) jet at various polar angles. Plate

trailing edge at L = 127.0mm.

(a) (b) (c)

Fig. 23 Coherence-based source distribution ψ(x,ω) for the jet with plate in reflection configuration with

L = 101.6 mm (white vertical lines). (a) DAS; (b) DSE; (c) DSEV.

VI. Conclusions
This study introduced improvements to the methodology for the direct estimation of the spatio-spectral distribution

of an acoustic source from microphone measurements that comprise fixed and continuously scanning sensors. The

signals from the scanning sensors are non-stationary due to the time-varying source-sensor distance and the traversing

of an acoustic field with spatially varying statistics. Quasi-stationarity is sought by dividing the signals into blocks

and applying of a frequency-dependent window within each block. Geometric effects, spatial resolution, spectral

accuracy, and adequacy of samples within each block are considered in the formulation of criteria for optimal block

size and block overlap within frequency ranges. Implementation of the method entails discrete reductions in block size

and Fourier-transform size with increasing frequency. The end result entails patching of the maps obtained with the
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(a) (b)

Fig. 24 High-frequency portion of the coherence-based source distribution ψ(x,ω) for the jet with plate in

reflection configuration with L = 101.6 mm (white vertical lines). (a) DSE; (b) DSEV.

(a) (b) (c)

Fig. 25 DSEV maps of coherence-based source distribution ψ(x,ω). (a) Isolated jet; (b) jet with the reflection

plate at L = 101.6 mm; (c) jet with the reflection plate at L = 127 mm. The white vertical lines mark the position

of the trailing edge.

variable-sized blocks.

The methodology was applied to the acoustic field emitted by a subsonic jet in isolation and surrounded by a

rectangular plate in shielding and reflection orientations. The nominal measurement setup comprised one continuously

scanning microphone and 23 fixed microphones. Noise source maps obtained with the variable-block-size approach

show clear improvement over those obtained with a constant block size : increased spatial resolution and practical

elimination of sidelobes. The maximum resolved frequency is increased by a factor of 1.2. The ability of the method

to generate high-quality noise source maps was further demonstrated in an array comprising only four fixed sensors.
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(a) (b) (c)

Fig. 26 Coherence based source strength ψ(x,ω) for the isolated jet. (a) Delay-and-sum with 5 fixed micro-

phones; (b) DSE with 4 fixed sensors and 1 scanning sensor; (c) DSEV with 4 fixed sensors and 1 scanning

sensor.

Acknowledgment
This work was conducted with NASA Phase I and Phase II Small Business Innovation Research (SBIR) funding

(contracts NNX16CC79P and NNX17CC18C) under Technical Monitor David Stephens. Partial support for D. Morata

came from a Balsells Fellowship.

References
[1] Brooks, T. F., and Humphreys, W. M., “A deconvolution approach for the mapping of acoustic sources (DAMAS) determined

from phased microphone arrays,” Journal of Sound and Vibration, Vol. 294, No. 4, 2006, pp. 856 – 879. doi:10.1016/j.jsv.

2005.12.046.

[2] Dougherty, R., “Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming,” AIAA Paper

2005-2961, 2005. doi:10.2514/6.2005-2961.

[3] Sijtsma, P., “CLEAN Based on Spatial Source Coherence,” International Journal of Aeroacoustics, Vol. 6, No. 4, 2007, pp.

357–374. doi:10.1260/147547207783359459.

[4] Papamoschou, D., “Imaging of Distributed Directional Noise Sources,” Journal of Sound and Vibration, Vol. 330, No. 10,

2011, pp. 2265–2280. doi:10.1016/j.jsv.2010.11.025.

[5] Papamoschou, D., Morata, D., and Shah, P., “Inverse Acoustic Methodology for Continuous-Scan Phased Arrays,” AIAA

Journal, Vol. 57, No. 12, 2019, pp. 5126–5141. doi:10.2514/1.J058085.

[6] Leclère, Q., Pereira, A., Bailly, C., Antoni, J., and Picard, C., “A unified formalism for acoustic imaging based on

microphone array measurements,” International Journal of Aeroacoustics, Vol. 16, No. 4-5, 2017, pp. 431–456. doi:

10.1177/1475472X17718883.

[7] Pereira, A., Antoni, J., and Leclère, Q., “Empirical Bayesian regularization of the inverse acoustic problem,” Applied Acoustics,

Vol. 97, 2015, pp. 11–29. doi:10.1016/j.apacoust.2015.03.008.

[8] Shah, P. N., and Papamoschou, D., “Characterization of High Speed Jet Acoustics Using High-resolution Multi-reference

Continuous-scan Acoustic Measurements on a Linear Array,” AIAA Paper 2020-0005, 2020. doi:10.2514/6.2020-0005.

20



[9] Vold, H., Shah, P., Davis, J., Bremner, P., McLaughlin, D., Morris, P., Veltin, J., and McKinley, R., “High Resolution

Continuous Scan Acoustical Holography Applied to High-Speed Jet Noise,” AIAA Paper 2010-3754, 2010. doi:10.2514/6.2010-

3754.

[10] Shah, P., Vold, H., and Yang, M., “Reconstruction of Far-Field Noise Using Multireference Acoustical Holography Measure-

ments of High-Speed Jets,” 2011. doi:10.2514/6.2011-2772.

[11] Stephens, D. B., and Vold, H., “Order tracking signal processing for open rotor acoustics,” Journal of Sound and Vibration,

Vol. 333, No. 16, 2014, pp. 3818 – 3830. doi:https://doi.org/10.1016/j.jsv.2014.04.005.

[12] Comesaña, D. F., Holland, K. R., Escribano, D. G., and de Bree, H.-E., “An Introduction to Virtual Phased Arrays for

Beamforming Applications,” Archives of Acoustics, Vol. 39, 2014, pp. 81–88. doi:10.2478/aoa-2014-0009.

[13] Papamoschou, D., and Rostamimonjezi, S., “Effect of Velocity Ratio on Noise Source Distribution of Coaxial Jets,” AIAA

Journal, Vol. 48, No. 7, 2010, pp. 1504–1512. doi:10.2514/1.J050140.

[14] Von Glahn, U., and Goodykoontz, J., “Forward Velocity Effects on Jet Noise with Dominant Internal Noise Source,” The

Journal of the Acoustical Society of America, Vol. 55, No. 2, 1974, pp. 438–438. doi:10.1121/1.3437412.

[15] Podboy, G., “Jet-Surface Interaction Test: Phased Array Noise Source Localization Results,” ASME Paper GT2012-69801,

2012, pp. 381–414. doi:10.1115/GT2012-69801.

[16] Papamoschou, D., “Prediction of Jet Noise Shielding,” AIAA Paper 2010-0653, 2010. doi:10.2514/6.2010-653.

21


	Introduction
	Inverse Acoustic Methodology for Continuous-Scan Phased Arrays
	Block Division
	Maximum Block Size
	Minimum Block Size
	Effect of the Frequency-Dependent Window
	Number of Blocks and Block Overlap
	Optimal Signal Division

	Experimental Setup
	Phased Microphone Array
	Signal Division
	Noise Sources

	Results
	Isolated Jet
	Jet with Installation Effects
	Jet with Reflection Plate
	Imaging with a Sparse Array

	Conclusions

